期刊文献+

基于人工免疫模式识别的结构损伤检测与分类算法 被引量:2

Structural Damage Detection and Classification Algorithm Based on Artificial Immune Pattern Recognition
下载PDF
导出
摘要 目的研究人工免疫系统的自治性、主动性、自适应及学习和记忆的仿生机理,来解决结构健康监测中的结构损伤识别和分类问题.方法通过模仿免疫识别和学习机理,提出一种基于Diagonal距离的人工免疫模式识别的结构损伤分类算法,并在IASC-ASCE SHM工作小组所提出的benchmark模型上对结构模式分类进行了实验测试.结果仿真实验表明基于Diagonal距离所得到的分类成功率要略高于Euclidean距离和Mahalanobis距离所得到的分类成功率;基于Diagonal距离研究了克隆率和记忆细胞替代阈值对分类成功率的影响,只要选取合适的参数值,就能获得较高的分类成功率.结论基于Diagonal距离的人工免疫模式识别的结构损伤检测和分类算法通过免疫学习和进化,产生高质量的记忆细胞,从而有效识别各种结构损伤模式. For the structure health monitoring, this paper studies the structural damage detection and classification problems using the artificial immune system which has the extremely powerful capabilities of autonomy, initiative, adaptive and the bionic principle between learning and memory. An artificial immune pattern recognition and structural detection classification algorithm based on diagonal distance is proposed through imitating the immune recognition and learning mechanism. With the structure of benchmark proposed by the IASC-ASCE SHM working group as the platform, the damage detection and classification are tested. The simulation results show the classification rate based on the diagonal distance is better than Euclidean and Ma- halanobis. The relationship between the classification rate and the parameters which are clone rate and memory cell replacement threshold value is tested based on the diagonal distance, which show that the cloning rate should try to choose suitable parameter values in order to get a better classification success rate. The algorithm based on the immune learning and evolution can produce the high quality memory cells which effectively identify all kinds of structural damage model.
出处 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2013年第2期378-384,共7页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家自然科学基金项目(61100159) 辽宁教育厅基金项目(L2011093) 辽宁省自然科学基金项目(201102180) 住房和城乡建设部项目(2010-k9-51)
关键词 人工免疫 结构健康监测 克隆 非线性参数 immune system structural health monitoring clone novlineer parameter
  • 相关文献

参考文献13

  • 1Lynch J P. An overview of wireless structural health monitoring for civil structures[ J ]. Philos Transact A Math Phys Eng Sci,2007 (1851) :345 -372.
  • 2杨家兴,周舜云.信号分析与处理的几种新方法[J].信息工程学院学报,1995,14(3):1-9. 被引量:51
  • 3Kolakowski P. Structural health monitoring-a review with the emphasis on low frequency methods [J ]. Engineering Transactions, IPPT,2007,55 : 239 - 275.
  • 4阎石,王秋婧,梁丽娉,蒙彦宇,赵乃志.一种粘贴式压电陶瓷驱动器力学模型[J].沈阳建筑大学学报(自然科学版),2011,27(5):846-851. 被引量:2
  • 5Sohn H,Farrar C R. Damage diagnosis using time se- res analysis of vibration signals [ J ]. Smart Materials and Structures,2001,10(3) :446 -451.
  • 6Lee J J, Lee J W, Yi J H. Neural networks-based damage detection for bridges considering errors in baseline finite element models [ J ]. Journal of Sound and Vibration ,2005.280( 3/4/5 ) :555 - 578.
  • 7丁永生,任立红.人工免疫系统:理论与应用[J].模式识别与人工智能,2000,13(1):52-59. 被引量:98
  • 8张四海,曹先彬,王煦法.基于免疫识别的免疫算法[J].电子学报,2002,30(12):1840-1844. 被引量:12
  • 9Carter J H. The immune system as a model for pat- tern recognition and classification [J]. Journal of the American Medical Informatics Association, 2000, 7 (1) :28 -41.
  • 10Castiglione F, Motta S, Nicosia G. Pattern recogni- tion by primary and secondary response of an artifi- cial immune system [ J ]. Theory in Biosciences, 2001,120(2) :93 - 106.

二级参考文献19

  • 1Chopra I.Review of state of art of smart structures and integrated systems[J].AIAA Journal,2002,40(11):2145-2187.
  • 2Song G,Mo Y L,Otero K.Health monitoring and rehabilitation of a concrete structyre using intelligent materials[J].Smart Mater Struct,2006,15 (2):309-314.
  • 3Park G,Cudney H H,Inman D J.Impedance-based health monitoring of civil structural componsents[J].Journal of Infrastructure Systems,2000 (4):353-354.
  • 4Stranb F K.Development of a piezoelectric actuator for trailing edge flap control of full scale rotor blades[J].Smart Material and Structure,2001,10 (1):25-34.
  • 5Pickard W F,Knoblauch M,Peters W S,et al.Prospective energy densities in the forisome,a new smart material[J].Materials Science and Engineering C,2006,26(1):104-112.
  • 6Niezrecki C,Brei D.Piezoelectric actuation:state of the art[J].The Shook and Vibration Digest,2001,33(4):269-280.
  • 7Wickramasinghe V K,Hagood N W.Durability characterization of active fiber composite actuators for helicopter rotor blade applications[J].Structures,Structural Dynamics and Materials Conference,2004,41 (4):931-937.
  • 8Vel S S,Batra R C.Cylindrical bending of laminated plates with distributed and segmented piezoelectric actuators/sensors[J].AIAA Journal,2000,38(5):857-867.
  • 9Vasques C M A,Rodrigues Dias J.Active vibration control of a smart beam through piezoelectric actuation and laser vibrometer sensing:simulation,design and experimental implementation[J].Smart Materials and Structures,2007,1 (16):305-316.
  • 10张福学.现代压电学[M].北京:科学出版社,2001..

共引文献159

同被引文献16

  • 1孙万泉,马震岳.基于一种免疫算法的结构动态参数识别[J].计算力学学报,2005,22(2):155-159. 被引量:2
  • 2Dasgupta D,Forrest S.Artificial immune sys- tem in industrial applications.In:Proc 2nd internation- al Conference on Intelligent Processing and Manufacturing of Materials, Honolulu, 1999.
  • 3Ishiguro A,Watanabe Y,Uchikawa Y.Fault diagnosis of plant systems using immune networks.In: Proc IEEE International Conference on multi-sensor Fusion and Integration for Intelligent.System, Las Ve- gas, NV, 1994.
  • 4Tang Z, Yamaguchi T, Tashima K et al.Multi- pie-valued immune network model and its simulation. In:Proc 27th International Symposium on Multi- ple-Valued Logic, Antigonish,Nova Scotia,Canada, 1997.
  • 5Carter JH.The immune system as a model for pattern recognition and classification[J].Journal of the American Medical Informatics Association 2000,7 (01): 28-41.
  • 6Castiglione F,Motta S, Nicosia G.Pattern recognition by primary and secondary response of an artificial immune system [J].Theory in Biosciences 2001,120(02): 93-106.
  • 7Chen B,Zang C. Artificial immune pattern recognition for structure damage classification [J]. Computers & Structures, 2009,87(21-22): 1394-1407.
  • 8Wang Quan,Deng Xiaomin.Damage detection with spatial wavelets [J].International Journal of Solids and Structures,1999?36:3443-3468.
  • 9Huang C S,Su W C.Identification of modal parame- ters of a time invariant linear system by continuous wavelet transformation[J].Mechanical Systems and Signal Processing,2007,21(4):1642-1664.
  • 10Ovanesova A V,Suarez L E.Applications of wavelet transforms to damage detection in frame structures [J].Engineering Structures,2004,26(1):39-49.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部