期刊文献+

基于不确定度量化加权的CKF算法 被引量:2

Consensus-based Kalman filtering algorithm based on weighted quantitative uncertainty
原文传递
导出
摘要 针对传感器网络中每个传感器节点的邻接节点状态估计值不确定度不同的问题,提出一种基于不确定度量化加权的一致性卡尔曼滤波算法(CKF).该算法通过考虑节点度数对于传感器网络估计精度的影响,结合节点度数提出了一种衡量邻接节点状态估计值不确定度的量化函数,并把量化值作为该邻接节点与当前节点的状态估计值偏差的融合权重引入一致性协议中,利用优化后的一致性协议对传感器节点先验估计值进行更新,可提高一致性卡尔曼滤波算法的估计精度;算法同时具有非一致性误差小和鲁棒性强等特点.最后在3种不同网络类型下,通过动态目标跟踪实验仿真验证了算法的有效性. Aiming at the different uncertainty of adjacency nodes' estimate value in wireless sensor networks, a novel consensus-based Kalman filtering algorithm based on weighted quantitative uncertainty was proposed. Considering the effect of node degree on estimate accuracy, a quantization function used for quantizing the uncertainty of adjacency nodes' estimate value was proposed firstly in the algorithm, and then the quantitative value was used to optimize the consensus protocol as a fusion weight of deviation between the adjacency nodes' estimate and the current noder's estimate. Then the optimized consensus protocol was used for updating the node's prior estimate value, which could improve the estimated accuracy of consensus based Kalman filtering algorithm. Furthermore, minor inconsistency error and strong robustness could be fulfilled in the novel algorithm. Finally, the effectiveness of the novel algorithm was proved by simulations of mobile target tracking problem under three different kinds of network.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期30-33,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60804066 61034006) 江西省青年科学家培养项目(20122BCB23010) 江西省教育厅科技项目(GJJ12286) 江西省高等学校科技落地计划资助项目(KJLD12068)
关键词 卡尔曼滤波 一致性 不确定度 节点度 鲁棒性 Kalman filtering consensus uncertainty degree robustness
  • 相关文献

参考文献14

二级参考文献176

  • 1李捷,刘先省,韩志杰.基于ARMA的无线传感器网络流量预测模型的研究[J].电子与信息学报,2007,29(5):1224-1227. 被引量:31
  • 2Xiao L, Boyd S, Lull S. A scheme for robust distributed sensor fusion based on average consensus[C]//Proceedings of the 4th International Symposium on Information Processing in Sensor Networks. Piscataway, NJ, USA: IEEE, 2005: 63-70.
  • 3Lopes C G, Sayed A H. Incremental adaptive strategies over distributed networks[J]. IEEE Transactions on Signal Processing, 2007, 55 (8): 4064-4077.
  • 4Schizas I D, Ribeiro A, Giannakis G B. Consensus in ad hoc WSNs with noisy links - Part I: Distributed estimation of deterministic signals[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 350-364.
  • 5Zhao T, Nehorai A. Information-driven distributed maximum likelihood estimation based on Gauss-Newton method in wireless sensor networks[J]. IEEE Transactions on Signal Processing, 2007, 55(9): 4669-4682.
  • 6Lynch N A. Distributed algorithms[M]. San Francisco, CA, USA: Morgan Kaufmann Publishers, 1996.
  • 7Ren W. Formation keeping and attitude alignment for multiple spacecraft through local interactions[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 633-638.
  • 8Ren W. Trajectory tracking control for miniature fixed-wing unmanned air vehicles[J]. International Journal of Systems Science, 2007, 38(4): 361-368.
  • 9Xiao L, Boyd S. Fast linear iterations for distributed averaging[J]. Systems and Control Letters, 2004, 53(1): 65-78.
  • 10Kokiopoulou E, Frossard P, Gkorou D. Optimal polynomial filtering for accelerating distributed consensus[C]// Proceedings of the IEEE International Sympious on Information Theory. Piscataway, NJ, USA: IEEE, 2008: 657-661.

共引文献84

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部