期刊文献+

快速构建复杂矿体块段模型的算法 被引量:3

Rapid voxelization method for complex orebody
原文传递
导出
摘要 针对矿体表面模型转换为块段模型过程中遇到的两个关键问题,即矿体空间形态复杂导致相交计算量大和须筛选块段数量多(≥106),提出应用二维网格分割与种子填充思想实现快速构建三维复杂矿体的块段模型算法,其时间复杂度为O(n).通过实验证明:该算法能花费相对小的空间代价解决大量三角面与体素相交计算问题,同时将复杂矿体块段模型的体素划分为边界立方格和内部立方格两大类,便于后续定量计算及三维空间分析,特别是将flood-fill思想应用于空间复杂矿体块段构模,具有一定的创新性,其不仅适用于表面模型到块段模型的转换,也适用于空间任意非自相交曲面的块段构模. There are two problems in the procedure. One is search of internal cuboids in complex ore- body, and the other is a number of intersections calculation between surfaces and voxels (≥10^6). In order to deal with the problems, a rapid voxelization algorithm was proposed for complex orebody by applying flood-fill algorithms and grid segmentation because these algorithms' complexity was O(n). There is a creative idea in algorithm that it applied 2D flood-fill algorithm to reconstruct 3D block model. Besides, the algorithm is suitable for voxelization of arbitrary addition, time complexity analysis and experiment were carried out, method is efficiency and general. non-self-intersection surface. In and the result showed that the
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期34-37,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(41002119) 国家高技术研究发展计划资助项目(2006AA06Z114) 国家科技支撑计划资助项目(2006BAB01A01) 矿产勘查三维预测评价信息平台开发及应用示范研究项目(1212010012013) 中央级公益性科研院所基本科研业务费专项资助项目
关键词 矿体建模 种子填充 块段模型 表面模型 等网格分割 储量估算 geomodelling flood-fill block model surface model uniform grid segmentation reserveestimation
  • 相关文献

参考文献16

二级参考文献42

共引文献307

同被引文献48

  • 1JIN Bao-xuan1,FANG Yuan-min2,SONG Wei-wei2 1. Yunnan Provincial Geomatics Centre, Kunming 650034, China,2. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China.3D visualization model and key techniques for digital mine[J].中国有色金属学会会刊:英文版,2011,21(S3):748-752. 被引量:4
  • 2李芳玉,潘懋,朱雷.三维缓冲体生成栅格算法研究[J].计算机辅助设计与图形学学报,2005,17(9):1928-1932. 被引量:18
  • 3吴江斌,朱合华.基于Delaunay构网的地层3D TEN模型及建模[J].岩石力学与工程学报,2005,24(24):4581-4587. 被引量:28
  • 4陈国良 刘修国.三维地质结构模型的切割分析技术及方法.计算机工程,2007,33(20):184-186.
  • 5Hoppe H, DeRose T, Duchamp T, et al. Surface reconstructionfrom unorganized points[C] //Computer Graphics Proceedings,Annual Conference Series, ACM SIGGRAPH. New York:ACM Press, 1992: 71-78.
  • 6Okabe A, Boots B, Sugihara K, et al. Spatial tessellations conceptsand applications of Voronoi diagrams[M]. New York:John Wiley & Sons Ltd, 1992.
  • 7Rajan V T. Optimality of the Delaunay triangulation ngulation in -d [J].Discrete & Compute Geometry, 1994, 12(1): 189-202.
  • 8Bowyer A. Computing Dirichlet tessellations[J]. The ComputerJournal, 1981, 24(2): 162-166.
  • 9Watson D F. Computing the n-dimensional Delaunay tessellationwith application to Voronoi polytopes[J]. The ComputerJournal, 1981, 24(2): 167-172.
  • 10Borouchaki H, Lo S H. Fast Delaunay triangulation in threedimensions[J]. Computer Methods in Applied Mechanics andEngineering, 1995, 128(1/2): 153-167.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部