期刊文献+

基于仿生嗅觉系统的苹果储存时间预测模型研究 被引量:1

Study of Apple Storage Time Predictive Model Using Bionic Olfactory System
原文传递
导出
摘要 本文研究了1种基于仿生嗅觉系统的苹果储存时间预测模型。使用该系统检测了不同存放时间的苹果样品,以主成分分析方法实现了不同储存时间苹果样品的部分区分。测量了不同存放时间苹果样品的菌落总数,并讨论该参数对于苹果样品储存时间分析结果的影响。采用随机共振计算检测样品的互相关系数极值,该参数可以完全区分所有苹果样品。以该参数构建苹果储存时间预测模型,验证结果表明该模型预测误差低于10%。该方法具有检测快速,易操作,准确度高以及可重复性好的优点。 Apple storage time predictive model using bionic olfactory system is proposed here. Bionic olfactory system responses to apple samples of different storage time are recorded. Principal component analysis partially discriminates apples of different storage time. Total viable count of apple samples is also measured. The influence of total viable count on responses of bionic olfactory system has been discussed. The cross-correlation coefficient maximum values class all samples more clearly. The predicting model has been developed and its predicting error of this model is less than 10%. This method presents the advantages including fast detection, easy operation, high accuracy and good repeatability.
出处 《中国食品学报》 EI CAS CSCD 北大核心 2013年第3期196-201,共6页 Journal of Chinese Institute Of Food Science and Technology
基金 浙江省公益技术应用研究项目(2011C21051) 国家自然科学基金项目(81000645) 浙江省自然科学基金项目(Y1100150) 浙江省大学生科技创新活动计划项目(2010R408015 2012R408041)
关键词 仿生嗅觉系统 苹果贮存期预测 主成分分析 随机共振 互相关系数 bionic olfactory system apple storage time prediction principle component analysis stochastic reso nance cross-correlation coefficient
  • 相关文献

参考文献23

  • 1Brezmes J, Llobet E. Correlation between electronic nose signals and fruit quality indicators on shelf-life measure-ments with pinklady applesfj]. Sensors and Actuators B,2001, 80: 41-50.
  • 2Concina I, Falasconi M, Gobbi E, et al. Early detection of microbial contamination in processed tomatoes by elec-tronic nose[J]. Food Control, 2009 , 20(10) : 873-880.
  • 3Oshita S, Shima K, Haruta T, et al. Discrimination of odors emanating from ‘La France,pear by semi-conductingpolymer sensorsfj]. Computers and Electronics in Agriculture, 2000, 26: 209-216.
  • 4Bema A.Z., Lammertyn J.,Saevels S.,et al. Electronic nose systems to study shelf life and cultivar effect ontomato aroma profile[J]. Sensors and Actuators B: Chemical, 2004 , 97 : 324-333.
  • 5周亦斌,王俊.基于电子鼻的番茄成熟度及贮藏时间评价的研究[J].农业工程学报,2005,21(4):113-117. 被引量:77
  • 6邹小波,赵杰文,潘胤飞,黄星奕.基于遗传RBF网络的电子鼻对苹果质量的评定[J].农业机械学报,2005,36(1):61-64. 被引量:26
  • 7Evans P, Persaud K C,McNeish A S, et al. Evaluation of a radial basis function neural networks for the deter-mination of wheat quality from electronic nose data[J]. Sensors and Actuators B, 2000, 69(3) : 348-358.
  • 8Abramson D, Hulasare R, York R K, et al. Mycotoxins, ergosterol, and odor volatiles in durum wheat duringgranary stroage at 16% and 20% moisture content[J]. Journal of Storaged Products Research, 2005, 41(1): 61-76.
  • 9潘天红,陈山,赵德安.电子鼻技术在谷物霉变识别中的应用[J].仪表技术与传感器,2005(3):51-52. 被引量:49
  • 10Paolesse R,Alimelli A, Martinlli E, et al. Detection of fungal contamination of cereal grain samples by an elec-tronic nose[J]. Sensors and Actuators B, 2006, 119(2) : 425-430.

二级参考文献52

  • 1周亦斌,王俊.电子鼻在食品感官检测中的应用进展[J].食品与发酵工业,2004,30(2):129-132. 被引量:54
  • 2潘天红,陈山,赵德安.电子鼻技术在谷物霉变识别中的应用[J].仪表技术与传感器,2005(3):51-52. 被引量:49
  • 3刘子宇,周伟,李平兰,傅鹏,陈玲.冷却猪肉中主要微生物的分离与初步鉴定[J].肉品卫生,2005(6):17-19. 被引量:23
  • 4马俪珍,南庆贤,戴瑞彤.冷却猪肉中腐败菌的分离、初步鉴定与初始菌相分析[J].天津农学院学报,2005,12(3):39-43. 被引量:40
  • 5康昌鹤 唐省吾.气、湿敏感器件及其应用[M].北京:科学出版社,1985.64-69.
  • 6GB/T4789.2-2008食品卫生微生物学检验.菌落总数测定[S].
  • 7MCENTEGART C M, PENROSE W R, STRATHMANN S, et al. Detection and discrimination of coliform bacteria with gas sensor arrays [J]. Sensors and Actuators B-Chemical, 2000, 70(1/3): 170-176.
  • 8GIBSON T D, PROSSER O, HULBERT J N, et al. Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose[J]. Sensors and Actuators B-Chemical, 1997, 44(1/3): 413-422.
  • 9MAGAN N, PAVLOU A, CHRYSANTHAKIS I. Milk-sense: a volatile sensing system reeognises spoilage bacteria and yeasts in milk[J]. Sensors and Actuators B-Chemical, 2001, 72(1): 28-34.
  • 10CONCINA I, FALASCONI M, GOBBI E, et al. Early detection of microbial contamination in processed tomatoes by electronic nose[J]. Food Control, 2009, 20(10): 873-880.

共引文献194

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部