期刊文献+

基于模拟退火粒子群算法的混合动力车参数优化 被引量:7

Parameters Optimization for HEV Based on Simulated Annealing Particle Swarm Algorithm
下载PDF
导出
摘要 分别采用多层次参数扫描(MLPS)算法和模拟退火粒子群优化(SAPSO)算法对并联式混合动力车逻辑门限控制策略的参数进行优化。将优化后的车辆以TEST-CITY-HWY测试循环进行仿真,并将结果与优化前的车辆的仿真结果进行对比。结果表明,经MLPS算法优化后,燃油消耗和HC与NOx排放分别下降了11.98%、6.01%和4.03%,但CO排放增加了25.18%;经SAPSO算法优化后,燃油消耗和HC、CO与NOx排放分别下降了13.61%、9.57%、27.78%和18.53%,且电池荷电状态(SOC)比MLPS优化略高。说明SAPSO算法在混合动力车控制参数优化效果上明显优于MLPS算法。 Multi-layer parameter scanning (MLPS) algorithm and simulated annealing particle swarm opti- mization (SAPSO) algorithm are used respectively to optimize the parameters of logic threshold control strategy for parallel hybrid electric vehicle (PHEV). The PHEV with optimized parameters is simulated with TEST-CITY-HWY test procedure, and the results are compared with that before optimization. The results indicate that after optimiza- tion with MLPS algorithm, the fuel consumption and the emissions of HC and NOx reduce by 11.98%, 6.01% and 4. 03% respectively, but with an increase of 25.18% in CO emission; while the optimization with SAPSO algorithm leads to an all-round reduction in fuel consumption and the emissions of HC, CO and NOx respectively of 13.61%, 9.57%, 27.78% and 18.53%. In addition, SAPSO optimization also results in a slight increase of battery SOC compared with MLPS, showing the superiority of SAPSO over MLPS in respect of the effects of control parameter op- timization for PHEV.
出处 《汽车工程》 EI CSCD 北大核心 2012年第7期580-584,共5页 Automotive Engineering
基金 江苏省动力机械清洁能源与应用重点实验室开放基金课题(QK09003)资助
关键词 模拟退火粒子群算法 控制策略 参数优化 simulated annealing particle swarm algorithm control strategy parameters optimization
  • 相关文献

参考文献12

  • 1于秀敏,曹珊,李君,高莹,杨世春,钟祥麟,孙平.混合动力汽车控制策略的研究现状及其发展趋势[J].机械工程学报,2006,42(11):10-16. 被引量:94
  • 2Delprat S,Guerra T M,Rimaux J.Optiaml Control of a Parallel Powertrain:From Global Optimization to Real Time Control Strtegy[C].IEEE 55th Vehicular Technology Conference VTC Spfing 2002,4:2082-2088.
  • 3段岩波,张武高,黄震.混合动力汽车模糊逻辑控制策略仿真[J].内燃机工程,2003,24(2):66-69. 被引量:15
  • 4Schouten N J,Salman M A,Kheir N A.Fuzzy Logic Control for Parallel Hybrid Vehicles[J].IEEE Transactions on Control Systems Technology,2002,10 (3):460-468.
  • 5Morteza Montazeri-Gh,Amir Poursamad,Babak Ghalichi.Application of Genetic Algorithm for Optimization of Control Strategy in Parallel Hybrid Electric Vehicles[J].Journal of the Franklin Institute,2006,343 (4-5):420-435.
  • 6吴光强,陈慧勇.基于遗传算法的混合动力汽车参数多目标优化[J].汽车工程,2009,31(1):60-64. 被引量:47
  • 7李丽,牛奔.粒子群优化算法[M].北京:冶金工业出版社,2010.
  • 8寇晓丽,刘三阳.基于模拟退火的粒子群算法求解约束优化问题[J].吉林大学学报(工学版),2007,37(1):136-140. 被引量:28
  • 9ADVISOR2002 Documentation[EB/OL].http://www.avl.com.
  • 10Yan Jingyu,Li Chongguo,Qian Huihuan,et al..Multi-objective Parameters Optimization of Electric Assist Control Strategy for Parallel Hybrid Electric Vehicle[C].IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2009:1992-1997.

二级参考文献48

共引文献184

同被引文献66

引证文献7

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部