期刊文献+

一类非线性离散Bellman-Bihari型不等式的推广

Generalization on Nonlinear Discrete Type Bellman-Bihari Inequalities
下载PDF
导出
摘要 建立了一类新的含有m项非线性离散Bellman-Bihari型不等式解的估计,所得结果推广了过去关于非线性离散Bellman-Bi-hari型不等式的相关结果,并用实例给出了解的估计. A new type of discrete Bellman-Bihari inequalities with more than one distinct nonlinear term was considered.The result generalizes some known results.An example was also given.
出处 《宜宾学院学报》 2012年第12期1-3,21,共4页 Journal of Yibin University
基金 四川省教育厅重点项目(10ZA173) 宜宾学院自然科学重点项目(2012S10)
关键词 非线性 离散型不等式 解的估计 nonlinear discrete inequality estimate of solutions
  • 相关文献

参考文献12

  • 1Bihari I.A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations[J].Acta Math Acad Sci Hungar,1956(7):81-94.
  • 2Cheung W.Gronwall-Bellman-Bihari integral inequalities and application to nonlinear Volterra integral equation[J].Southeast Asian Bull Math,2005 (29):447-454.
  • 3Zhang W,Deng S.Projected Gronwall-Bellman' s inequality for integrable functions[J].Math Comput Modelling,2001,34(3-4):393-402.
  • 4Choi S K,Deng S,Koo N J,et al.Nonlinear integral inequalities of Bihari-type without class H[J].Math Inequal Appl,2005 (8):643-654.
  • 5Borysenko S,Matarazzo G,Pecoraro M.A generalization of Bihari' s lemma for discontinuous functions and its application to the stability problem of differential equations with impulse disturbance[J].Georgian Math J,2006,13:229-238.
  • 6Pito M.Integral inequalities of Bihari-type and applications[J].Funkcial Ekvac,1990,33:387-403.
  • 7Medved M.A new approach to an analysis of Henry type integral inequalities and their Bihari versio[J].J Math Anal Appl,1997,214(2):349-366.
  • 8Pachpatte B G.Integral inequalities of the Bihari type[J].Math lnequal appl,2002,5:649-657.
  • 9Pachpatte B G.On generalizations of Bihari' s inequality[J].Soochow J Math,2005,31:261-271.
  • 10Pachpatte B G.Integral and finite difference inequalities and applications[M].New York:Elsevier,2006.

二级参考文献8

  • 1WANG Ji-zhong, MENG Fan-wei, LI Ji-bao. Asymptotic behavior of solutions of second order nonlinear difference equations [J]. Kodai Math., 1996, 19(2): 200-206.
  • 2DEMIDOVIC V B. A stability test for difference equations [J]. Diferentsial'nye urarneniya, 1969, 5:1247-1255. (in Russian)
  • 3SZMANDA B. Nonoscillation, oscillation and growth of solutions of nonlinear difference equations [J].Math. Anal. Appl. , 1985, 109: 22-30.
  • 4MENG Fan-wei. Boundedness of solutions of higher order of a class nonlinear difference equations [J].Ann. Differential Equations, 1988, 4(4).
  • 5YEH CC. Discrete inequalities of the Gronwall-Bellman type in n independent variables [J]. Math.Anal. Appl. , 1985, 106: 282-285.
  • 6DEO S G, MUROESHAR M G.4 note on Gronwall's inequality [J]. Bull. London Math. Soc. , 1971,3: 34-36.
  • 7PACHPATTE B G. A note on Gronwall-Bellman inequality [J]. Math. Anal. Appl., 1973, 44: 758-762.
  • 8吴宇.一类新的弱奇性Volterra积分不等式解的估计[J].应用数学学报,2008,31(4):584-591. 被引量:15

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部