一类脉冲时滞偏微分方程初边值问题的matlab图像
The Matlab Image of a Class of Pulse Delay Partial Differential Equation with the Initial Boundary Value Problem
摘要
对应用隐性的有限差分法格式求解一类脉冲时滞偏微分方程的基本算法进行了介绍和数值模拟.模拟结果表明,该方法求得的数值解有较快的运行速度和较高的精度.
The basic implicit finite difference algorithm used to solve a class of pulse delay partial differential equation with the initial boundary value problem was introduced and numerical simulated.The simulation results show that the numerical solution obtained by this method has faster speed and higher accuracy.
出处
《宜宾学院学报》
2012年第12期22-24,共3页
Journal of Yibin University
关键词
脉冲
时滞
隐性差分格式
图像
impulses
delays
implicit difference scheme
image
参考文献8
-
1Kosko B.Bidirectional associative memories[J].IEEE Transactions on Systems Man Cybernet,1988,18(1):49-60.
-
2Zhou Y Q,Zhong S M,Mao Y,et al.Global asymptotic stability analysis of nonlinear differential equations in hybrid bidirectional associative memory neural networks with distributed time-varyi ng delays[J].Neurocomputing,2009,72:1803-1807.
-
3Balasubramaniam P,Kalpana M,Rakkiyappan R.Global asymptotic stability of BAM fuzzy cellular neural networks with time delay in the leakage term,discrete and unbounded distributed delays[J].Mathematical and Computer Modelling,2011,53(5-6):839-853.
-
4Li K L,Zhang L P,Zhang X H,et al.Stability in impulsive Cohen-Grossberg-type BAM neural networks with distributed delays[J].Applied Mathematics and Computation,2010,215:3970-3984.
-
5Pan J,Liu X Z,Zhong S M.Stability criteria for implusive reaction-diffusion Cohen-Grossberg neural networks with time-varying delays.Mathematical and Computer Modelling[J].2010(51):1037-1050.
-
6Pan J,Zhong S M.Dynamic analysis of stochastic reaction-diffusion cohen-grossberg neural networks with delays[J].Advances in Difference Equations,Volume 2009,Article ID 410823.
-
7Pan J,Zhong S M.Dynamical behaviors of impulsive reaction-diffusion Cohen-Grossbergneural network with delays[J].Neurocomputing,2010(73):1344-1351.
-
8饶若峰,黄家琳,钟守铭.反应扩散BAM神经网络的全局指数稳定性[J].吉林大学学报(理学版),2012,50(6):1086-1090. 被引量:3
二级参考文献8
-
1Kosko B. Bidirectional Associative Memories [J].IEEE Transactions on Systems, Man, and Cybernetics, 1988, 18(1) : 49-60.
-
2ZHOU Yong-qiang, ZHONG Shou-ming, MAO Ye, et al. Global Asymptotic Stability Analysis ot Nonlinear Differential Equations in Hybrid Bidirectional Associative Memory Neural Networks with Distributed Time-Varying Delays [J]. Neurocomputing, 2009, 72(7/8/9) : 1803-1807.
-
3Balasubramaniam P, Kalpana M, Rakkiyappan R. Global Asymptotic Stability of BAM Fuzzy Cellular Neural Networks with Time Delay in the Leakage Term, Discrete and Unbounded Distributed Delays [J]. Mathematical and Computer Modelling, 2011, 53(5/6): 839-853.
-
4LI Ke-lin, ZHANG Li-ping, ZHANG Xin-hua, et al. Stability in Impulsive Cohen-Grossberg-Type BAM Neural Networks with Distributed Delays [J]. Applied Mathematics and Computation, 2010, 215(11) : 3970-3984.
-
5PAN Jie, LIU Xin-zhi, ZHONG Shou-ming. Stability Criteria for Implusive Reaction-Diffusion Cohen-Grossberg Neural Networks with Time-Varying Delays [J]. Mathematical and Computer Modelling, 2010, 51(9/10): 1037-1050.
-
6PAN Jie, ZHONG Shou-ming. Dynamic Analysis of Stochastic Reaction-Diffusion Cohen-Grossberg Neural Networks with Delays [J/OL]. Advances in Difference Equations, 2009, doi: 10. 1155/2009/410823.
-
7PAN Jie, ZHONG Shou-ming. Dynamical Behaviors of Impulsive Reaction-Diffusion Cohen-Grossbergneural Network with Delays [J]. Neurocomputing, 2010, 73(7/8/9): 1344-1351.
-
8饶若峰,王雄瑞.没有Landesman_-Lazer型条件的拟线性强振动方程之无穷多解[J].数学物理学报:中文版,2012,32A(2):744-752.
-
1彭亚绵.一类偏微分方程初边值问题的数值解法[J].河北理工学院学报,2006,28(4):103-106.
-
2王峥,徐宝林.三阶非线性偏微分方程初边值问题解的存在性[J].哈尔滨师范大学自然科学学报,2008,24(6):32-34.
-
3蒲利春,张雪峰,徐丽君.非线性“loop”孤子方程的确定解[J].物理学报,2005,54(9):4186-4191. 被引量:4
-
4郭志萍,刁光成.有限差分格式在偏微分方程初边值问题中的应用[J].山西师范大学学报(自然科学版),2013,27(1):18-21.
-
5游皎,李万爱.高效蒙特卡罗方法在偏微分方程初边值问题中的应用[J].中山大学学报(自然科学版),2015,54(6):37-40. 被引量:1
-
6徐弼军,胡炜,李祖樟.基于Matlab的大学物理实验模拟[J].浙江科技学院学报,2008,20(2):87-89. 被引量:4
-
7张正林.一类拟线性抛物型偏微分方程初边值问题的逐层优化算法[J].长春工业大学学报,2015,36(4):477-480.
-
8张正林.二维抛物型偏微分方程初边值问题的解法分析[J].哈尔滨师范大学自然科学学报,2015,31(5):41-43.
-
9郭艾.一类非线性积分偏微分方程初边值问题的整体解[J].数学物理学报(A辑),1999,19(1):30-38. 被引量:3
-
10贺宣军,宋文静,夏子伦,郑钟志,段鹏.一类双曲型方程弱解的正则性[J].云南民族大学学报(自然科学版),2014,23(2):99-103.