期刊文献+

缺陷对脆性材料碎裂过程的影响 被引量:3

Effects of defects on fragmentation processes of brittle materials
下载PDF
导出
摘要 采用特征线方法模拟脆性材料中应力波的传播过程,采用内聚力模型模拟断裂点的断裂过程,运用C++语言开发了一个模拟脆性圆环发生一维膨胀碎裂过程的实用工具ExpRing,简要给出了该程序的理论基础和使用说明。采用此程序模拟了具有初始缺陷的脆性圆环在均匀膨胀作用下的碎裂过程,探讨了不同应变率下,缺陷分布特征对碎裂过程和平均碎片尺寸的影响。计算结果表明:(1)在一定的应变率范围内,等间距分布的点缺陷会控制断裂点的位置及碎片个数,在碎片尺寸-应变率曲线上形成一个缺陷控制碎裂平台;(2)点缺陷的间距和弱化程度将影响缺陷控制碎裂平台的宽度和位置;(3)具有缺陷的脆性材料的表观强度呈现应变率硬化特征;(4)在一定的应变率范围内,正弦分布型缺陷同样导致缺陷控制碎裂的现象。 The method of characteristics was used to analyze the stress wave propagations in the brittle materials.The random nucleation and the growth of the cracks in the brittle materials were described by using the cohesive fracture model.A practical simulation tool,ExpRing was developed for simulating the fracture and fragmentation in an expanding brittle ring.The ExpRing code was briefly explained.By using this code,the fragmentations of the rings with different intrinsic defects were simulated.The calculation results show:(1) within a certain strain-rate range,the equally-spaced point defects will control the final fracture sites and the fragment sizes and it can induce a defect-controlled-fragmentation(DCF) platform in the relation curve between the fragment size and the strain rate;(2) the spacing and the magnitude of the defects will alter the width and the location of the DCF platform;(3) the strength of the brittle materials with initial defects exhibit an apparent strain-rate effect.And further study displays that the materials with sinuously-distributed defects exhibit similar fragmentation behaviors to the materials with equally-spaced point defects.
作者 段忠 周风华
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2013年第1期11-20,共10页 Explosion and Shock Waves
基金 国家自然科学基金项目(10572066 10972108) 宁波大学王宽诚幸福基金项目~~
关键词 固体力学 缺陷控制碎裂 特征线方法 脆性材料 内聚力模型 碎裂 本征缺陷 solid mechanics defect-controlled fragmentation(DCF) method of characteristics brittle materials cohesive fracture model fragmentation intrinsic defect
  • 相关文献

参考文献13

  • 1Weibull W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951,18 ..293- 297.
  • 2Denoual C, Hild F. A damage model for the dynamic fragmentation of brittle solids[J]. Computer Methods in Ap- plied Mechanics and Engineering, 2000,183 (3/4) .. 247 258.
  • 3Hild F, Denoual C, Forquin P, et al. On the probabilistic-deterministic transition involved in a fragmentation process of brittle materials[J]. Computers and Structures, 2003,81(12):1241-1253.
  • 4Grady D E. Local inertial effects in dynamic fragmentation[J]. Journal of Applied Physics, 1982,53(1) :322 325.
  • 5Glenn L A, Chudnovsky A. Strain-energy effects on dynamic fragmentation[J]. Journal of Applied Physics, 1986, 59(4) :1379-1380.
  • 6Miller O, Freund L B, Needleman A. Modeling and simulation of dynamic fragmentation in brittle materials[J]. International Journal of Fracture, 1999,96(2) : 101-125.
  • 7Drugan W J. Dynamic fragmentation of brittle materials: Analytical mechanics-based models[J]. Journal of Me chanics and Physics of Solids, 2001,49(6):1181-1208.
  • 8Shenoy V B, Kim K S. Disorder effects in dynamic fragmentation of brittle materials[J]. Journal of Mechanics and Physics of Solids, 2003,51(11/12)..2023-2035.
  • 9Zhou F H, Molinari J F, Ramesh K T. A cohesive-model based fragmentation analysis: Effects of strain rate and initial defects distribution[J]. International Journal of Solids and Structures, 2005,42(18/19) ..5181-5207.
  • 10Zhou F H, Molinari J F, Ramesh K T. Effects of material properties on the fragmentation of brittle materials[J]. International Journal of Fracture, 2006,139 (2) : 169-196.

二级参考文献27

  • 1Mott N F. Fragmentation of shell cases[J]. Proceedings of the Royal Society of London: A, 1947,189:300-308.
  • 2Grady D E. Applications of survival statistics to the impulsive fragmentation of ductile rings[C] // Shock Waves and High-strain-rate Phenomena in Metals. Meyers M A, Murr L E. London & New York: Plenum, 1981: 181- 192.
  • 3Grady D E. Local inertial effects in dynamic fragmentation[J]. Journal of Applied Physics, 1982,53: 322-325.
  • 4Grady D E, Kipp M E. Mechanisms of dynamic fragmentation: Factors governing fragment size[J]. Mechanics of Materials, 1985,4:311-320.
  • 5Kipp M E, Grady D E. Dynamic fracture growth and interaction in one dimension[J]. Journal of Mechanics and Physics of Solids, 1985,33:399-415.
  • 6Grady D E, Kipp M E. Dynamic rock fragmentation[M]//Fracture Mechanics of Rocks. London: Academic Press Inc, 1987:429-475.
  • 7Holian B L, Grady D E. Fragmentation by molecular dynamics: The microscopic Big Bang[J]. Physical Review Letters, 1988,60:1 355-1 358.
  • 8Grady D E, Kipp M E. Experimental measurement of dynamic failure and fragmentation properties of metals[J]. International Journal of Solids and Structures, 1995, 32 : 2 779-2 991.
  • 9Grady D E. Impact failure and fragmentation properties of tungsten carbide[J]. International Journal of Impact Engineering, 1999, 23:307-317.
  • 10Grady D E. The statistical fragmentation theory of N. F. Mott[C]//Furnish M D, Gupta Y M, Forbes J W. Shock Compression of Condensed Materials. AIP, 2004:455-460.

共引文献11

同被引文献18

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部