期刊文献+

基于粒子滤波的机车信号灯跟踪方法 被引量:2

Particle filter based railway traffic lights tracking
原文传递
导出
摘要 为保障机车行驶安全,由车载高清摄像机获取路况视频并识别信号灯及其颜色状态时,视频中信号灯目标尺度变化大、机车行驶抖动、复杂光环境及光圈自适应调节滞后等因素使得信号灯鲁棒跟踪与识别具有不小难度.针对信号灯跟踪问题,本文提出一种带检测矫正的粒子滤波跟踪方法,该方法在粒子滤波框架下对信号灯进行跟踪,并通过一个在线更新的模板对滤波结果进行检测矫正,以提高跟踪结果的准确性.为提高跟踪算法对光照以及目标尺度变化的适应能力,本文在对信号灯建模时融合了HSV颜色特征与局部二元模式特征.实验结果表明,该方法在较复杂的场景下能够很好地对信号灯进行实时鲁棒的跟踪,并且跟踪结果具有较高的准确性. For insuring the railway locomotive driving safety,the railway traffic light and its color state can be recognized from high-definition road condition video that acquired by on-vehicle camera.However,big scale change of traffic lights,locomotive shaking,complex lighting condition,and the delay of aperture adjusting would make the traffic light tracking and recognition difficult.In this paper,the authors will focus on the railway traffic light tracking and put forward a detect-rectified Particle Filter(PF) tracking approach,which first tracks traffic light with particle filter,and then applies an online-updating template to improve the tracking accuracy.In addition,aim to increase the tracking adaptability,the authors model the traffic light by combining HSV color feature and Local Binary Pattern(LBP) feature.Experimental results demonstrate that the proposed method can effectively track the traffic light in complicated background in real-time with good robustness and high locating accuracy.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期281-287,共7页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(61173182 61179071) 四川省科技厅项目(2011JY0124 2012HH0004) 四川省科技创新苗子工程(2011021)
关键词 目标跟踪 粒子滤波 HSV颜色特征 局部二元模式 object tracking particle filter HSV color feature local binary pattern
  • 相关文献

参考文献15

  • 1Comanieiu D, Ramesh V, Meer P. Kernel-based ob- ject tracking[J]. IEEE Transaction on PAMI, 2003, 25(5) .. 564.
  • 2Lucas B D, Kanade T. An iterative image registra- tion technique with an application to stereo vision [C]//Proeeedings of Imaging Understanding Work- shop. [s. l. ]:[s. n. ], 1981.
  • 3张泽旭,李金宗,李宁宁.基于光流场分割和Canny边缘提取融合算法的运动目标检测[J].电子学报,2003,31(9):1299-1302. 被引量:55
  • 4Arulampalam S, Maskell S, Gordon N. A tutorial on particle filters for on-line nonlinear/non-gaussian bayesian tracking[J]. IEEE Trans on Signal Process- ing, 2002, 50(2).. 174.
  • 5Yu Y, Che Y F, Infrared object tracking based on particle filter[C]//2010 3rd International Congress on Image and Signal Processing. [s. l. ]: [s. n. ], 2010.
  • 6Hess R, Fern A. Discriminatively trained particle fil- ters for complex multi-object tracking[J]. IEEE Con- ference on CVPR, 2009, 20(25): 240.
  • 7李乔,高明亮,汪晓飞,何小海.基于多重信息融合的人脸跟踪方法[J].四川大学学报(自然科学版),2012,49(2):335-340. 被引量:1
  • 8Gordon N J, Salmond D J, Smith A F M. Novel ap- proach to nonlinear/non-gaussian bayesian state esti- mation[J]. Radar and Signal Processing, IEE Pro- ceedings F, 1993, 140(2):107.
  • 9Ojala T, Pietiktiinen M, Harwood D. A comparative study of texture measures with classification based on feature distributions[J]. Pattern Recognition, 1996, 29(1) .. 51.
  • 10Ojala T, Pietikainen M, Maenpaa T. Multiresolu- tion gray-scale and rotation invariant texture classi- fication with local binary patterns[J]. IEEE Trans- action on PAMI, 2002, 24(7) : 971.

二级参考文献25

  • 1娄越,王志成,李鑫.基于多特征融合的弱小目标检测方法研究(英文)[J].红外与激光工程,2007,36(3):395-397. 被引量:4
  • 2SasaG Loncaric S.Spatio-temporal image segmentation using optical flow and clustering algorithm [A]..First Int′l Workshop on Image and Signal Processing and Analysis [C].Pula,Croatia,2000.63-68.
  • 3Hom B K P, Schunck B G.Determinig optical, flow [ J]. Artificial Intelligence, 1981,17:185 - 203.
  • 4Bruss A R, Horn B K P. Passive navigation [ J ]. Computer Vision,Graphica, and Image Processing, 1983,21:3- 20.
  • 5Thompson W B, Pong T C, Detecting moving object [J], Int J Comp Vision, 1990,4:39 - 57.
  • 6Sasa G, Loncaric S. Spatio-temporal image segmentation using optical flow and clustering algorithm [A],First Int'l Workshop on Image and Signal Processing and Analysis [C]. Pula,Groatia,2000.63-68.
  • 7Smith S M, Brady J M, ASSET-2:Real-Time Motion Segmentation and shape Tracking [J]. IEEE Trans, 1995,PAMI-8(17) :814 - 820.
  • 8Adiv G, Determining three-dimensional motion and structure from optical flow generated by several moving objects [J], IEEE. Trans, 1985,PAMI-7(4) :384 - 401.
  • 9Nagel H H, Displacement vectors derived from second-order intensity variations in image sequences [J],Comp Vision Graph Image Process,1983,25:85- 117.
  • 10Nagel H H, Enkermann W. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences[J].IEEE Trans, 1986, PAMI-5:565 - 593.

共引文献74

同被引文献17

  • 1Dan S. Optimal state estimation [M]. New York: John Wiley Sons, 2006.
  • 2. Dan S, Chia T L. Kalman filtering with state e- quality constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 : 128.
  • 3Dan S. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms [J]. lET Control Theory Appl, 2010, 4: 1303.
  • 4Geir E. The ensemble Kalman filter: theoretical formulation and practical implementation [J]. O- cean Dynamics, 2003, 53.. 343.
  • 5Stordal A S, Karlsen H A, Navdal G, et al. Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter [J]. Computational Geosciences, 2011, 15: 293.
  • 6Xu L F, Li X R. Modeling and state estimation for dynamic systems with linear equality constraints [J]. IEEE Transactions on Signal Processing, 2013, 61: 2927.
  • 7Yang C, Blasch E. Kalman filtering with nonlinearstate constraints [J]. IEEE Transactions on Aero- space and Electronic Systems, 2009, 45.. 70.
  • 8Gillijins S, Mendoza O B, Chandrasekar J, et al. What is the ensemble Kalman filter and how well does it work [C]. //IEEE. Proceeding of the A- merican Control Conference, 2006: 4448.
  • 9Sridhar U. A direct sampling particle filter from approximate conditional density function supported on constrained state space [J]. Computers and Chemical Engineering, 2006, 35 1110.
  • 10柴世红.基于边缘检测的铁轨识别[J].铁路计算机应用,2009,18(4):1-3. 被引量:17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部