期刊文献+

低损耗聚合物互连光波导的制备及性能测试 被引量:6

Fabrication and performance testing of the low-loss interconnect polymer optical waveguide
原文传递
导出
摘要 对应用于宽带光互连的光印刷电路板(OPCB)制备技术进行了研究。作为光互连系统的传输介质,我们研究了互连光波导的性能。基于紫外光刻技术,在常规PCB基底上制备了聚合物光波导,研究了光波导的制备流程以及工艺参数;并且通过不断优化工艺参数,制备得到了低损耗的光波导;通过测试光波导的传输损耗以及眼图,分析了光波导的性能。光波导在850nm波长条件下的传输损耗可以达到0.13dB/cm,实现了10Gbit/s光通信信号的传输。 This work investigates the fabrication technique of an optical printed circuit board (OPCB) for broadband optical interconnection applications. We study the properties of the interconnect optical waveguide. We fabricate the interconnect polymer optical waveguide by using the UV photolithography method on a standard PCB. This paper presents the process and the technological parameters of the fab- rication. Low-loss polymer optical interconnect waveguides are fabricated by optimizing the technological parameters. The length of the optical waveguide is 10 crru The size of the waveguide is 50/μm X 50/μm. After the fabrication, the performance of the OPCB is characterized by testing the transmission loss and eye diagram of the optical waveguide. The index matching liquid is used when we test the propagation loss of the waveguide. It could reduce the coupling loss between the fiber and the waveguide efficiently. The optical propagation loss of the interconnect polymer optical waveguide is 0.13 dB/cm at the wave- length of 850 nm. A 10 Gbit/s pbs transmission is realized based on the OPCB. The eye diagram under the 10Gbit/s signal is good. The interconnect optical waveguide could be used in the high speed and long distance communication systems.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第4期716-719,共4页 Journal of Optoelectronics·Laser
关键词 聚合物光波导 紫外光刻 光互连 印刷电路板(PCB) polymer optical waveguide UV photolithography optical interconnect printed circuit board(PCB)
  • 相关文献

参考文献26

  • 1Marc A, Taubenblatt. Optical interconnects for high-per- formance computing[J].Journal of Lightwave Technolo- gy.2012.30(4 ) :448-458.
  • 2Bykhovsky Dima, Arnon Shlomi. Design and simulation of optical unguided bus interconnect[J]. Photonics Technol- ogy Letters. 2010.24(15 ) : 1353-1355.
  • 3FENG Quan-you, SANG Xin-zhu, DOU Wen-hua. Demon- stration of a 5 Gb/s 2:1 interchip optical interconnect sys- tem [J]. Microwave and Optical Technology Letters, 2012,54(5) : 1176-1179.
  • 4Clint L S.Fuad E D.Alexander V R.et al. A 24-channel. 300 Gb/ s, 8. 2 pJ/ bit. full-duplex fiber-coupled optical transceiver module based on a single "Holey" CMOS IC [J]. Journal of Lightwave Technology. 2011. 29 ( 1 ) : 512- 553.
  • 5Anand M P, Alyssa B A. Analysis of intrachip electrical and optical fanout [J]. Applied Optics, 2005.44 ( 30 ): 6361-6372.
  • 6Hoyeol Cho, Pawan Kapur, Krishna C Saraswat. Power comparison between high-speed electrical and optical in- terconnects for interchip communication[J]. 2001,22( 9 ): 2021-2033.
  • 7Hoyeol C, Pawan K, Krishna C. Power comparison be- tween high-speed electrical and optical interconnects for interchip communication[J]. Journal of Lightwave Tech- nology,2004,22(9) :2021-2033.
  • 8Naeemi A,XU J P,Mule A V. Optical and electrical inter- connect partition length based on chip-to-chip bandwidth maximization[J]. Photonics Technology Letters, 2004,16 (4) : 1221-1223.
  • 9Alan Benner. Optical interconnect opportunities in super- computers and high end computing[A]. Proc. of OFC Col- located National Fiber Optic Engineers Conference[C]. 2012,1-60.
  • 10LUO Feng-guang,ZONG Liang-jia. Configuration of an op- tical waveguide interconnect mesh network based on EOPCB[J]. Chinese Optical Letters, 2010,8 (2) .. 224- 228.

二级参考文献44

共引文献18

同被引文献118

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部