摘要
在求解多自由度系统动力反应的Duhamel积分中利用分段多次插值多项式逼近任意动力荷载,推导了相夫公式。由于分段多项式的Duhamel积分是有精确解,因而和一般的数值积分法相比,本方法不但具有较高的计算精度,而且大大减少了计算工作量。
The piecewise interpolating polynomial is employed to approximate arbitrary dynamic loads in the Duhamel integration for the solution of dynamic response of multiple-degree of-freedom systems. The relavant formulas are derived. Because the Duhamel integration of piecewise polynomial is exact, the proposed solution is more accurate and computationally effort saving than the traditional numerical integration schemes.
出处
《工程力学》
EI
CSCD
北大核心
2000年第1期125-133,共9页
Engineering Mechanics
关键词
分段插值多项式
强迫振动
多自由度系统
结构
piecewise interpolating polynomial
Duhamel integration, dynamic response