摘要
利用基本解的特性,将面力积分方程化成仅含有Cauchy 主值积分的形式.基于这种边界积分方程,提出了一种新的边界轮廓法.对于三维问题,该方法只须计算沿边界单元界线的线积分,对二维问题,则只需计算边界单元两结点的势函数之差,无须进行数值积分计算.
Presents a new boundary contour method. This method is based on the traction boundary integral equation. The hypersingular traction boundary integral equation with a strongly singular form is derived. The formulations of the boundary contour method based on this equation is derived for linear elasticity. The implementation for two dimensional problems with quadratic boundary elements is presented. Numerical solutions for illustrative examples are compared with analytical solutions. Numerical results are uniformly accurate.
出处
《固体力学学报》
CAS
CSCD
北大核心
1999年第4期335-342,共8页
Chinese Journal of Solid Mechanics
基金
山东省自然科学基金!( 批准号: Q95A0202)
关键词
边界元法
边界轮廓法
弹性力学
boundary element method, boundary contour method, traction boundary integral equation