期刊文献+

h-自适应边界元方法的插值残差计算及误差估计 被引量:1

The Calculation of Interpolation Residue and Error Estimation in h-adaptive Boundary Element Method
下载PDF
导出
摘要 本文提出了一种用于估计h-自适应边界元过程解误差的新方法。这种方法基于h-自适应边界元过程生成的离散网格,通过计算近似解的插值残差,以此作为误差估计的依据。此外,这种误差分析方法方法易于程序化,可以很方便地接入现有h-自适应边界元计算机程序(简单细分或分层细分),而对原程序不作大的改动。通过对二个经典的弹性静力学问题的分析表明:本文的方法能较好地估计边界元解的误差,并使h-自适应边界元程序的分析更加有效可靠。 In this paper, a new method of error estimation was suggested on h-ddaptive boundary element method. Based on the discrete meshes that are generated for the process of h-adaptive refinement, the solution error was estimated by the interpolation residue. In addition, this method is easy to programming, and with less modification to be introduced into the current codes of h- adaptive boundary elements (simple refinement or hierarchical refinement) . Its validity and effectiveness have been confirmed by two classic elastostatics problems.
作者 汪新 赵志业
出处 《力学季刊》 CSCD 2000年第2期179-186,共8页 Chinese Quarterly of Mechanics
关键词 h-自适应边界元 插值残差 误差估计 h- adaptive boundary elements interpolation residue error estimation
  • 相关文献

参考文献1

  • 1Parreia P,Adv Eng Soft,1992年,15卷,3/4期,249页

同被引文献16

  • 1于春肖.弹性问题的自适应数值解析研究[J].燕山大学学报,2005,29(1):17-21. 被引量:2
  • 2余德浩.自适应边界元法的数学理论[M].北京:科学出版社,1993:347-358.
  • 3ERATH C, FERRAZ-LEITE S, FUNKEN S, et al. Energy norm based a posteriori error estimation for boundary element methods in two dimensions [ J ]. Appl Numer Math, 2009, 59 ( 11 ) : 2713-2734.
  • 4FERNANDEZ J R, HILD P. A posteriori error analysis for the normal compliance problem[ J]. Appl Numer Math, 2010, 60(1-2) : 64-73.
  • 5CHEN Zejun, XIAO Hong, YANG Xia. Error analysis and novel near-field preconditioning techniques for Taylor series multipole-BEM [ J ]. Eng Anal Boundary Elements, 2010, 34(2) : 173-181.
  • 6KITA E, KAMIYA N. Error estimation and adaptive mesh refinement in boundary element method: an overview[J]. Eng Anal Boundary Elements, 2001, 25 (7): 479-495.
  • 7LEE C C. Fuzzy logic in control systems : fuzzy logic controller[ J ]. IEEE Trans Systems, Man & Cybernetics, 1990, 20 (2) : 419-435.
  • 8BOUJI M, ARKADAN A A, ERICSEN T. Fuzzy inference system for the characterization of SRM drives under normal and fault conditions [ J ]. IEEE Trans Magn, 2001, 37(5) : 3745-3748.
  • 9HIYAMA T, MIYAZAKI K, SATOH H. A fuzzy logic excitation system for stability enhancement of power systems with multi-mode oscillations[ J]. IEEE Trans Energy Conversion, 1996, 11 (2) : 449-454.
  • 10SATSIOS K J, LABRIDIS D P, DOKOPOULOS P S. An artificial intelligence system for a complex electromagnetic field problem: part I: finite element calculation and fuzzy logic development[ J]. IEEE Trans Magn, 1999, 35 (1) : 516-522.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部