期刊文献+

振荡应力奇异性及其强度系数的数值分析方法 被引量:2

A Numerical Method for Determination of Oscillatory Stress Singularities and Corresponding Stress Intensity Coefficients
下载PDF
导出
摘要 本文以具有振荡应力奇异性的平面问题为例,提出了一种利用普通的数值分析结果(由有限元或边界元程序计算得到的应力分量或位移分量),来确定奇异点附近的振荡应力奇异性次数以及相应的复应力强度系数的数值分析方法。为了验证该方法的有效性,应用平面应变情况下的边界元计算结果,对界面端模型进行了分析。计算结果表明,本方法可以精确地求得振荡应力奇异性次数,并且与奇异性对应的复应力强度系数也可以很方便地应用外插法得到。 This paper proposed a numerical method to determine the oscillatory stress singularities and the related stress intensity coefficients, by use of common numerical solutions (stresses or displacements) which obtained by an ordinary numerical technique such as finite element method or boundary element method. To verify the efficiency of the present method, an interface edge model of bonded dissimilar materials under the plane strain state is analyzed by boundary element method, and the orders of the stress singularities and the related intensity coefficients are examined numerically. The results show that all the orders of the stress singularities at the interface edge can be determined precisely, and the related stress intenisity coefficients can also be determined by extrapolation method.
出处 《力学季刊》 CSCD 2000年第2期230-236,共7页 Chinese Quarterly of Mechanics
基金 国家自然科学基金19502011
关键词 振荡应力奇异性 复应力强度系数 数值分析 材料 oscillatory stress singularity complex stress intensity coefficient singular point numerical method extrapolation method
  • 相关文献

参考文献10

  • 1Leslie B S,Int J Fract,1997年,85卷,333页
  • 2Charalambides P G,Int J Fract,1996年,76卷,97页
  • 3Yang X X,Int J Fract,1996年,78卷,299页
  • 4Wu Y L,Engng Fract Mech,1994年,48卷,6期,755页
  • 5Gu L,Int J Solids Struct,1994年,31卷,6期,865页
  • 6Lu H,J Appl Mech,1993年,60卷,1期,93页
  • 7Tan C L,Int J Solids Struct,1992年,29卷,24期,3201页
  • 8Yuuki R,Seisam-Kenkyu,1991年,43卷,7期,306页
  • 9Yuuki R,Trans JSME A,1991年,57卷,539期,1542页
  • 10Bogy D B,Int J Solids Struct,1971年,7卷,8期,993页

同被引文献19

  • 1牛忠荣.多点边值问题的插值矩阵法及误差分析[J].计算物理,1993,10(3):336-344. 被引量:19
  • 2陈梦成,平学成,朱剑军.压电材料中切口接头端部平面电弹性场奇异性有限元分析[J].固体力学学报,2005,26(2):157-162. 被引量:7
  • 3王海涛,佘锦炎.双压电材料界面力电耦合场奇异性研究[J].工程力学,2006,23(1):165-171. 被引量:7
  • 4Gross B. Piano elastostatic analysis of V-notched plate[J]. International Journal of Fracture Mechanics, 1972, 8(3): 267-276.
  • 5Chen D H. Stress intensity factors for V-notched strip under tension or in-plane bending[J]. International Journal of Fracture, 1994, 70(1): 81-97.
  • 6Yakobori T, Kamei A, Konosu S A. Criterion for low stress brittle fracture of notched specimens based on combined micro and macro fracture with notches[J]. Engineering Fracture Mechanics, 1976, 8(2): 397-409.
  • 7Seweryn A. Brittle fracture criterion for structure with sharp notches[J]. Engineering Fracture Mechanics, 1994, 47(5): 673-681.
  • 8Carpenter W C. The eigenvector solution for a general corner or finite opening crack with further studies on the collocation procedure[J]. International Journal of Fracture, 1985, 27(1): 63-74.
  • 9Chen D H, Nisitani H. Singular stress field near the comer of jointed dissimilar material[J]. Journal of Applied Mechanics, 1993, 60(3): 607-613.
  • 10Bogy D B. Two edge bonded elastic wedges of different materials and wedge angles under surface tractions[J]. Journal of Applied Mechanics, 1971, 38(3): 377-389.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部