期刊文献+

二维薄体结构位势问题的虚边界元法 被引量:1

Virtual boundary element method for 2D thin body in potential problems
下载PDF
导出
摘要 提出求解平面位势薄体问题的虚边界元法,给出求解薄体问题的新的途径,验证了虚实边界的距离公式,阐释距离选取与边界离散单元数有关.数值算例表明,所取得的数值结果与精确解非常吻合,即虚边界元法是求解薄体结构问题的强有力工具,且方法简单、易于程序设计. In this paper, the virtual boundary element method (VBEM) for solving thin body problem in 2D potential theory is presented. That is, it provides a new approach to dealing with such problems. For VBEM, the choice of distance between virtual boundary and real boundary is a key problem and may greatly affect the accuracy of the results. Some of the existing formulas, which are related with the number of discrete elements on the boundary, are further verified. The numerical results obtained by proposed method match the exact solution very well, which show that the VBEM is not only a strong tool for solving 2D thin body problems but also a simple and easily programmed method.
出处 《山东理工大学学报(自然科学版)》 CAS 2012年第3期18-21,共4页 Journal of Shandong University of Technology:Natural Science Edition
基金 山东省自然科学基金资助重点项目(ZR2010AZ003)
关键词 虚边界元法 位势问题 薄体结构 VBEM potential problems thin body
  • 相关文献

参考文献7

  • 1Luo J F, Liu Y J, Berger E J. Analysis of two-dimensional thin struc- tures (from micro-to nano-scales) using the boundary element method [J]. Computational Mechanics, 1998, 22:404-412.
  • 2Zhou H L, Niu Z R, Cheng C Z,etal. Analytical integral algo- rithm applied to boundary layer effect and thin body effect in BEM for anisotropic potential problems [J]. Computers structures, 2008, 86:1 656-1 671.
  • 3Zhang Y M, Gu Y, Chen J T. Analysis of 2D thin walled structures in BEM with high-order geometry elements using exact integration [J]. Computer Modeling in Engineering & Sciences, 2009, 50: 1-20.
  • 4Sladek V, Sladek J. Computation of strip yield lengths for a crack in 2-d stationary thermoelasticity using the BEM [J]. En- gineering Analysis with Boundary Elements, 1993, 11:189-193.
  • 5Gao X W, Yang K, Wang J. An adaptive dement subdivision tech- nique for evaluation of various 2D singular boundary integrals [J]. En- gineerin4g Analysis with Boundary Elements, 2008, 32: 692-696.
  • 6Telles J C F. A self-adaptive co-ordinate transformation for effi- cient numerical evaluation of general boundary element integrals [J]. Internat. J. Numer. Methods Eng, 1987, 24: 959-937.
  • 7张耀明,孙焕纯,杨家新.虚边界元法的理论分析[J].计算力学学报,2000,17(1):56-62. 被引量:24

二级参考文献3

共引文献23

同被引文献5

  • 1I.uo J F, I.iu Y J, Berger E J. Analysis of two-dimensional thin structures(from micro-to nano-scales) using the boundary ele- ment method[J]. Computational Mechanics,1998,22:404 412.
  • 2Zhang Y M, Gu Y, Chen J T. Analysis of 2D thin walled struc tures in BEM with high-order geometry elements using exact in tegration[J]. Computer Modeling in Engineering and Sciences 2009, 50(1)!1-20.
  • 3Zhou H L, Niu Z R, Cheng C Z, etal. Analytical integral algo- rithm applied to boundary layer effect and thin body effect in BEM for anisotropie potential problems[J]. Computers and Structures, 2008,86,1656-1671.
  • 4张耀明,刘召颜,李功胜,屈文镇.各向异性位势平面问题的规则化边界元法[J].力学学报,2011,43(4):785-789. 被引量:2
  • 5屈文镇,袁飞,张耀明.二维弹性薄体问题的虚边界元法[J].山东理工大学学报(自然科学版),2012,26(3):64-67. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部