期刊文献+

二维弹性薄体问题的虚边界元法 被引量:1

Virtual boundary element method for 2D thin body in elastic problems
下载PDF
导出
摘要 拓展了虚边界元方法的应用范围,将其应用于二维弹性薄体问题,避免了奇异边界积分和几乎奇异边界积分的计算.通过数值算例验证了虚、实边界的距离公式,公式的特点是距离与边界离散单元数有关,表明公式对于二维薄体结构同样适用.按照张耀明等虚边界元法的理论分析公式选择虚、实边界间的距离,即使结构狭窄到纳米级(10-9 m),依然可获得高精度的数值解. In this paper, virtual boundary element method (VBEM) is used for dealing with 2D thin body problems in elastic theory, which extends the application field of VBEM. It should be noted that the evaluation of singular and nearly singular integrals is also avoided successfully. For VBEM, the choice of distance between virtual boundary and real boundary is a key problem and may greatly affect the accuracy of the results. Some of the existing formulas, which are related with the number of discrete elements on the boundary, are further verified by numerical exam- ples. Numerical experiments show that fairly high accuracy of numerical results can be achieved by utilizing the formula of distance between virtual and real boundary, even when the structure is narrowed down to the nano (10-9m) scales, which sufficiently indicates that VBEM is suitable for solving 2D thin body problems.
出处 《山东理工大学学报(自然科学版)》 CAS 2012年第3期64-67,共4页 Journal of Shandong University of Technology:Natural Science Edition
基金 山东省自然科学基金资助项目(ZR2010AZ003)
关键词 虚边界元法 弹性问题 薄体 VBEM elastic problems thin body
  • 相关文献

参考文献6

  • 1Zhou H L, Niu Z R, Cheng C Z, etal. Analytical integral algo- rithm applied to boundary layer effect and thin body effect in BEM for anisotropic potential problems [J]. Computers structures 2008,86 : 1 656-1 671.
  • 2Zhang Y M, Gu Y, Chen J T. Analysis of 2D thin walled struc- tures in BEM with high-order geometry elements using exact in- tegration [J]. Computer Modeling in Engineering & Sciences 2009,50:1-20.
  • 3John W, Tsay T K. Analytical evaluation and application of the singularities in boundary element method [ J ]. Eng. Anal. Bound. Elem. 2005,29:241-256.
  • 4Sladek V, Sladek J, Tanaka M. Optimal transformations of the inte- gration variables in computation of singular integrals in BEM [J]. Int. J. Numer. Meth. Eng. 2000,47(7):1 263-1 283.
  • 5Telles J C F. A self-adaptive co-ordinate transformation for effi- cient numerical evaluation of general boundary element integrals [J]. Int. J. Numer. Meth. Eng. 1987,24: 959-937.
  • 6张耀明,孙焕纯,杨家新.虚边界元法的理论分析[J].计算力学学报,2000,17(1):56-62. 被引量:24

二级参考文献3

共引文献23

同被引文献5

  • 1I.uo J F, I.iu Y J, Berger E J. Analysis of two-dimensional thin structures(from micro-to nano-scales) using the boundary ele- ment method[J]. Computational Mechanics,1998,22:404 412.
  • 2Zhang Y M, Gu Y, Chen J T. Analysis of 2D thin walled struc tures in BEM with high-order geometry elements using exact in tegration[J]. Computer Modeling in Engineering and Sciences 2009, 50(1)!1-20.
  • 3Zhou H L, Niu Z R, Cheng C Z, etal. Analytical integral algo- rithm applied to boundary layer effect and thin body effect in BEM for anisotropie potential problems[J]. Computers and Structures, 2008,86,1656-1671.
  • 4张耀明,刘召颜,李功胜,屈文镇.各向异性位势平面问题的规则化边界元法[J].力学学报,2011,43(4):785-789. 被引量:2
  • 5袁飞,屈文镇,张耀明.二维薄体结构位势问题的虚边界元法[J].山东理工大学学报(自然科学版),2012,26(3):18-21. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部