期刊文献+

高超声速飞行器翼面前缘半主动金属热防护系统设计与分析 被引量:11

Design and analysis of semi-active thermal protection system for the leading edges of hypersonic vehicles
下载PDF
导出
摘要 针对高超声速飞行器翼面前缘的热防护,文章设计了一种基于热管的半主动金属热防护系统。设计中使用工程估算方法预测了翼面前缘的气动热环境,并采用有限元法对高温合金翼面前缘结构进行了热固耦合分析和强度考核。分析结果表明:在马赫数为5~8的飞行状态下,热管可以有效地降低高超声速飞行器翼面前缘峰值温度达23%~31%,且呈现飞行马赫数越高则峰值温度降低幅度越大的趋势;同时热管还可以降低翼面前缘结构温差达90%以上,从而极大地减小由于温差而导致的热应变和内部应力。因此,将基于热管的半主动金属热防护系统应用于高超声速飞行器翼面前缘可以真正实现结构防热一体化,有助于获得较好的防热和减重效果。 A semi-active metallic thermal protection system based upon heat pipes is designed for the leading edge structure of a hypersonic vehicle in this paper. The engineering estimation method is adopted to predict the aerodynamic heating environment of the structure. The finite element method is used for the thermal-solid coupling analysis and the strength evaluation. The calculated results show that: for a hypersonic vehicle under a cruise Mach number of 5-8, the peak temperature of the leading edge would reduce 23%-31%, with the use of heat pipes, and the reduction increases with the increase of the Mach number. The maximum temperature difference also decreases by at least 90%, with significantly reduced thermal strain and stress level. Consequently, it is possible to reduce the weight of the structure. The semi-active thermal protection system based upon heat pipes is a promising solution for the leading edges of hypersonic vehicles in terms of both thermal protection and structural efficiency.
出处 《航天器环境工程》 2013年第1期1-7,共7页 Spacecraft Environment Engineering
关键词 半主动金属热防护系统 热管 翼面前缘 高超声速飞行器 semi-active metallic thermal protection system heat pipes leading edge hypersonic vehicle
  • 相关文献

参考文献10

  • 1Grover G M. Evaporation-condensation heat transfer device[P].US Patent,No.3229759,1966.
  • 2Silverstein C C. A feasibility study of heat-pipe-cooled leading edges for hypersonic cruise aircraft,NASA 1972-12949[R].
  • 3Niblock G A,Reeder J C. Four space shuttle wing leading edge concepts[J].Journal of Spacecraft,1974,(05):314-320.
  • 4Camarda C J. Analysis and radiant heating tests of a heat-pipe-cooled leading edge,NASA 1977-28967[R].
  • 5Glass D E. Heat-pipe-cooled leading edges for hypersonic vehicles[A].Santa Barbara:NASA,2006.1-37.
  • 6陈连忠,欧东斌.高温热管在热防护中应用初探[J].实验流体力学,2010,24(1):51-54. 被引量:20
  • 7刘冬欢,郑小平,王飞,刘应华.内置高温热管热防护结构的传热防热机理[J].清华大学学报(自然科学版),2010,50(7):1094-1098. 被引量:16
  • 8Sutton K,Grave R. A general stagnation-point convectiveheating equation for arbitrary gas mixtures,Langley Research Center,NASA 1972-10978[R].
  • 9Svehla R. Estimated viscosities and thermal conductivities of gases at high temperatures,NASA 1963-22862[R].
  • 10Sleeves C A,He M Y,Kasen S D. Feasibility of metallic structural heat pipes as sharp leading edges for hypersonic vehicles[J].Journal of Applied Mechanics,Transactions of the ASME,2009,(03):1-9.

二级参考文献14

  • 1SILVERSTEIN C C. A feasibility study of heat pipe-cooled leading edges for hypersonic cruise aircraft[R]. NASA CR 1857, 1971.
  • 2NIBLOCK G A, REEDER J C. Four space shuttle wing leading edge concepts[J]. Journal of Spacecraft and Rockets, 1974,11(5):314-320.
  • 3ANON. Study of structural active cooling and heat sink systems for space shuttle[R]. NASA CR 123912, 1972.
  • 4CAMARDA C J. Analysis and radiant heating tests of a heat-pipe-cooled leading edge [R]. NASA TN D-8468, 1977.
  • 5GLASS D E. Heat-pipe-cooled leading edges for hypersonic vehicles[R]. NASA Langley Research Center July 12-13, 2006.
  • 6McGuire M K, Bowles J V, Yang L H, et al. TPS selection and sizing tool implemented in an advanced engineering environment [C]// Proc 42th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada. AIAA Press, 2004 : 1 - 11.
  • 7Wojcik C C, Clark L T. Design,annalysis,and testing of refractory metal heat pipe using lithium as the working fluid [C]// Proe 26th AIAA Thermophysics Conference. Honolulu, Hawaii: AIAA Press, 1991: 1-14.
  • 8Thornton E A. Thermal structures: four decades of progress[J]. Journal of Aircraft, 2002, 29 : 485 - 498.
  • 9Glass D E, Camarda C J, Merrigan M A, et al. Fabrication and testing of mo-re heat pipes embedded in carbon/carbon [J]. Journal of Spacecraft and Rockets, 1999, 36:79 -86.
  • 10Colwell G T, Modlin J M. Heat pipe and surface mass transfer cooling of hypersonic vehicle structures[J].Journal of Thermophysics and Heat Transfer, 1992, 6:492 - 499.

共引文献29

同被引文献102

引证文献11

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部