期刊文献+

基于MMP-2DPCA的人脸识别方法 被引量:1

Face Recognition Based on MMP-2DPCA
下载PDF
导出
摘要 提出了一种基于二维小波分解和融合多特征的2DPCA(简称MMP-2DPCA)人脸识别方法.该方法对于人脸表情变化不敏感,能够很好地压缩和表征原始人脸图像;融合图像既能反映人脸的全局特征,又能反映人脸的局部特征,具有更强的表达能力和判别能力.在ORL人脸库上的实验表明:MMP-2DPCA方法具有有效性. A new face recognition method based on multi-modal parts and Two-dimensional principal component analysis(MMP-2DPCA) is proposed.Althongh this nwe method is insensitive to the changes in face expression,however,it can express the principal features of the face image by compressing data,and can express both local and holistic features of the face images by blending images.The results of the experiments on the face databases of ORL demonstrate the effectiveness of the proposed new method and its algorithm.
出处 《中南民族大学学报(自然科学版)》 CAS 2013年第1期70-74,79,共6页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(61141010) 武汉市科技供需对接计划项目(201051824575) 武汉市科技攻关计划项目(201210421136) 中南民族大学智能无线通信湖北省重点实验室开放课题(IWC2012005)
关键词 人脸识别 主成分分析 MMP-2DPCA方法 二维小波分解 特征提取 face recognition principal component analysis MMP-2DPCA two-dimensional wavelet decomposition feature extraction
  • 相关文献

参考文献2

二级参考文献19

  • 1周大可,杨新,彭宁嵩.改进的线性判别分析算法及其在人脸识别中的应用[J].上海交通大学学报,2005,39(4):527-530. 被引量:12
  • 2杜成,苏光大.用于人脸识别的正面人脸图像眼镜摘除[J].清华大学学报(自然科学版),2005,45(7):928-930. 被引量:11
  • 3Saito Y, Kenmochi Y, Kotani K. Estimation of eyeglassless facial images using principal component analysis [C]//Proc of IEEE ICIP'99. Piscataway, NJ: IEEE, 1999:197-201.
  • 4Wu C, Liu C, Shum H Y, et al. Automatic eyeglasses removal from face images [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(3): 322-336.
  • 5Park J S, Oh Y H, Ahn S C, et al. Glasses removal from facial image using recursive error compensation [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(5): 805-811.
  • 6Wu J, Trivedi M M. A regression model in tensorPCA subspace for face image super-resolution reconstruction [C]// Proc of the 18th Int Conf on Pattern Recognition(ICPR'06). Piscataway, NJ: IEEE, 2006:627-630.
  • 7Colombo A, Cusano C, Schettini R. Detection and restoration of occlusions for 3D face recognition [C]//Proc of IEEE ICME'06. Piscataway, NJ: IEEE, 2006:1541-1544.
  • 8Hwang B W, Lee S W. Reconstruction of partially damaged face images based on a morphable face model [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(3) : 365-372.
  • 9Smet M D, Fransens R, Gool L V. A generalized EM approach for 3D model based face recognition under occlusions[C] //Proc of IEEE CVPR'06. Los Alamitos, CA: IEEE Computer Society, 2006:1423-1430.
  • 10Tsuda K, Ratsch G. Image reconstruction by linear programming [J]. IEEE Trans on Image Processing, 2005, 14(6) : 737-744.

共引文献19

同被引文献14

  • 1周国民,陈勇,李国军.人脸识别中应用小波变换的两个关键问题[J].浙江大学学报(理学版),2005,32(1):34-38. 被引量:27
  • 2刘秀丽,彭复员.基于小波变换的加权特征脸识别算法[J].计算机应用研究,2007,24(10):163-165. 被引量:9
  • 3Moghaddam B, Pentland A. Face Recognition: From Theory to Applications [ M ]. Berlin : Springer Verlag, 1998.
  • 4Li B, Liu Y. When eigenfaces are combined with wavelets [ J ]. Knowledge-Based Systems, 2002,15 ( 5 ) : 343-347.
  • 5Kirby M, Sirovich L. Application of the Karhunen-Loeve procedure for the characterization of human faces [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1990,12( 1 ) : 103-108.
  • 6M Turk A P. Eigenfaces for recognition[ J]. Journal of Cognitive Neuroscience, 1991,3( 1 ) :71-86.
  • 7Yang M. Kernel eigenfaces vs. Kernel fisherfaces: face recognition using kernel methods [ C ]//Fifth IEEE International Conference on Automatic Face and Gesture Recognition. IEEE,2002:215-220.
  • 8Gottumukkal R, Asari V. An improved face recognition technique based on modular PCA approach [ J ]. Pattern Recognition Letters, 2004,25 (4) : 429- 436.
  • 9J Y, D Z, AF F, et al. Two-dimensional PCA:a new approach to appearance-based face representation and recognition [ J ]. IEEE Trans Pattern Anal Mach Intell, 2004,26 ( 1 ) : 131-137.
  • 10吴献超,刘莎,闫琳,侯晓荣.基于小波子带能量加权的人脸识别方法[J].宁波大学学报(理工版),2009,22(2):207-211. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部