期刊文献+

带有多重临界指数的椭圆方程组的非平凡解 被引量:1

Nontrivial Solutions to Elliptic Systems Involving Multiple Critical Exponents
下载PDF
导出
摘要 研究了一类带有多重临界Sobolev指数和Hardy项的椭圆方程组,运用变分方法和分析技巧,证明了方程组对于大范围参变量非平凡解的存在性. In this paper,a system of elliptic equations is investigated,which involves multiple critical Sobolev exponents and Hardy-type terms.By variational methods and analytic techniques,the existence of nontrivial solutions to the system is established for large ranges of parameters.
出处 《中南民族大学学报(自然科学版)》 CAS 2013年第1期92-96,共5页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家民委科研基金资助项目(12ZNZ004)
关键词 椭圆方程组 临界指数 HARDY不等式 变分方法 elliptic system solution critical exponent Hardy inequality variational method
  • 相关文献

参考文献8

  • 1Hardy G,Littlewood J,Polya G.Inequalities[M].Cambridge:Cambridge University Press,1988:239-243.
  • 2Egnell H.Elliptic boundary value problems with singularcoefficients and critical nonlinearities[J].Indiana UnivMath,1989,38(1):235-251.
  • 3Talenti G.Best constant in Sobolev inequality[J].AnnMat Pura Appl,1976,110(1):353-372.
  • 4Terracini S.On positive solutions to a class of equationswith a singular coefficient and critical exponent[J].AdvDifferential Equations,1996,2(1):241-264.
  • 5Huang Y,Kang D.On the singular elliptic systemsinvolving multiple critical Sobolev exponents[J].Nonlinear Anal,2011,74(2):400-412.
  • 6Cao D,Han P.Solutions for semilinear elliptic equationswith critical exponents and Hardy potential[J].JDifferential Equations,2004,205(2):521-537.
  • 7Ferrero A,Gazzola F.Existence of solutions for singularcritical growth semilinear elliptic Equations[J].JDifferential Equations,2001,177(1):494-522.
  • 8Rabinowitz P.Minimax methods in critical points theorywith applications to differential Equations[M].Washington:American Mathematical Society,1986:7-50.

同被引文献8

  • 1Hardy G, Littlewood J, Polya G. Inequalities [ M ]. Cambridge : Cambridge University Press, 1988 : 239-243.
  • 2Egnell H. Elliptic boundary value problems with singular coefficients and critical nonlinearities [ J ]. Indiana Univ Math, 1989, 38(2): 235-251.
  • 3Talenti G. Best constant in Sobolev inequality [ J ]. Ann Mat Pura Appl, 1976, 110(1) : 353-372.
  • 4Terracini S. On positive solutions to a class of equations with a singular coefficient and critical exponent [ J ]. Adv Differential Equations , 1996, 2(2) : 241-264.
  • 5Huang Y, Kang D. On the singular elliptic systems involving multiple critical Sobolev exponents [ J ]. Nonlinear Anal, 2011, 74( 1 ): 400-412.
  • 6Cao D, Han P. Solutions for semilinear elliptic equations with critical exponents and Hardy potential [ J ]. J Differential Equations, 2004, 205 ( 1 ) : 521-537.
  • 7Ferrero A, Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations [ J ]. J Differential Equations, 2001, 177 ( 1 ) : 494-522.
  • 8Rabinowitz P. Minimax methods in critical points theory with applications to differential Equations [ M ]. Washington : American Mathematical Society, 1986 : 7-50.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部