期刊文献+

多特征融合的道路车辆检测方法 被引量:9

Fusing Multiple Features to Detect On-road Vehicles
下载PDF
导出
摘要 通过改进基于Haar-like特征和Adaboost的级联分类器,提出一种融合Haar-like特征和HOG特征的道路车辆检测方法。在传统级联分类器的Harr-like特征基础上引入HOG特征;为Haar-like特征和HOG特征分别设计不同形式的弱分类器,对每一个特征进行弱分类器的训练,用Gentle Adaboost算法代替Discrete Adaboost算法进行强分类器的训练;在级联分类器的最后几层上使用Adaboost算法挑选出来的特征组成特征向量训练SVM分类器。实验结果表明所提出的方法能有效检测道路车辆。 Improving chscade classifier based on Haar like feature and Adaboost, this paper proposes an on road vehicle detection method fusing Harr--like and HOG. Firstly, HOG feature is integrated into the traditional HaaPlike feature set. Additionally, different weak classifiers for HOG features and Haar-like features are designed, and Gentle Adahoost algo- rithm is adopted to train the layer classifiers. Finally, based on the fusion features, a cascade classifier combined with Sup- port Vector Machine is proposed. In the last few layers of the cascade, feature vectors composed by the features that selected by Gentle Adaboost algorithm are used to train robust SVM classifiers. Experimental results indicate that the proposed method can detect on road vehicles effectively.
作者 蔡益红
出处 《计算技术与自动化》 2013年第1期98-102,共5页 Computing Technology and Automation
关键词 道路车辆检测 级联分类器 Haar-like 方向梯度直方图 ADABOOST 支持向量机 On-road vehicle detection cascade classifier Haar-like HOG AdaBoost SVM
  • 相关文献

参考文献11

  • 1Z Sun,G Bebis, R Miller. On-road vehicle detection: A review [J]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2006,28(5) :694-711.
  • 2Z Sun,(; Bebis,R Miller. Monocular precrash vehicle detec- tion: features and classifiers[J]. IEEE Transactions on Image Processing,2006,15(7) :2019-2034.
  • 3C Chen,R Wang,J Jier. Automatic vehicle detection using lo- cal features- A statistical approach[J]. IEEE Transactions on international transportantion system, 2008,9 ( 1 ) : 83- 96.
  • 4G Cheng, X Chen. A vehicle detection approach based on multi-features fusion in the fisheye images[J]. In,2011 ard International Conference on Computer Research and Develop- ment (ICCRD). Shanghai: IEEE Press. 2011,1 - 5.
  • 5W Cheng, D Jhan. A cascade classifier using Adaboost algo- rithm and support vector machine for pedestrian detection [J]. In: 2011 IEEE International Conference on Systems, Mall, and Cybernetics (SMC), Anchorage, AK : IEEE Press, 2011 : 1430- 1435.
  • 6文学志,方巍,郑钰辉.一种基于类Haar特征和改进AdaBoost分类器的车辆识别算法[J].电子学报,2011,39(5):1121-1126. 被引量:87
  • 7I. Mao, M Xie, Y Huang. Preceding vehicle detection using histograms of oriented gradients[J]. In:2010 International Conference on Communications, Circuits and Systems (1C- CCAS), Chengdu = IEEE Press, 2010, a54 - a 58.
  • 8D Lowe. Distinctive image features from scale invariant key- points[J].International Journal of Computer Vision, 2004, 60(2):91-110.
  • 9T Miyoshi,T Shibata. A hardware friendly object detection algorithm based on variable-block-size directional-edge histo- grams[J]. In:World Automation Congress (WAC),2010. Kobe=IEEE Press,2010,1- 6.
  • 10P Viola, M Jones. Robust real time object detection[J]. Inter- national Journal of Computer Vision,2001,57(2) : 137- 154.

二级参考文献15

  • 1Matthews N D, An P E, Charnley D, Harris C J. Vehicle detec- tion and recognition in greyscale imagery[J]. Control Engineering Practice, Printed in Great Britain, 1996,4 (4) : 473 - 479.
  • 2Sidla O, Paletta L, Lypetskyy Y, Jarmer C. Vehicle recognition for highway lane survey[A]. The 7th International IEEE Con- ference on Intelligent Transportation Systems[ C]. Washington, D.C., USA, 2004: 531 - 536.
  • 3Schneidennan H. A statistical approach to 3D object detection applied to faces and cars[A]. Proceedings WEE Conference on Computer Vision and Pattern Recognition [C ]. Hilton Head, SC, USA, 2000,1 : 746 - 751.
  • 4Sun Z, Bebis G, Miller R. On-road vehicle detection using Gabor filters and support vector machines[A]. IEEE 14th Interna- tional Conference on Digital Signal Processing[C]. Santorini, Hellas(Greece). 2002:1019 - 1022.
  • 5Sun Z, Bebis G, Miller R. Improving the performance of onroad vehicle detection by combining Gabor and wavelet fea- turesE A]. The IEEE 5th International Conference on Intelligent Transportation Systems, [ C ]. Singapore, 2002:130 - 135.
  • 6Wen-Chung Chang;Chih-Wei Cho. Online boosting for vehicle detection[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. Published by Institute of Electrical and Electronics Engineers,Inc. ,2010,40(3):892- 902.
  • 7Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[A]. In Proceeding of International Conference on Computer Vision and Pattern Recognition [ C ]. Kauai, HI,USA 2001,1:511 - 518.
  • 8Viola P, Jones M. Robust real-time face detection[J].International Journal of Computer Vision, Published by Springer, 2004,57(2) :137 - 154.
  • 9Lienhart R,Maydt J. An extended set of Haar-like features for rapid object detection[ A]. The IEEE International Conference on Image Processing [ C ]. New York, USA, 2002, 1 : 900 - 903.
  • 10Freund Y, Schapire R E. Experiments with a New Boosting Algorithrn[ A]. In Proceedings of the 13th Conference on Machine Learning, Morgan Kanfmann[ C]. USA, 1996,148 - 156.

共引文献86

同被引文献85

  • 1刘洋,王海晖,向云露,卢培磊.基于改进的Adaboost算法和帧差法的车辆检测方法[J].华中科技大学学报(自然科学版),2013,41(S1):379-382. 被引量:14
  • 2余勇,郑宏.基于形态神经网络的高分辨率卫星影像车辆检测[J].哈尔滨工程大学学报,2006,27(B07):189-193. 被引量:10
  • 3李刚,曾锐利,丁茹,林凌.多信息融合技术的城市交通监控系统的研究[J].传感技术学报,2006,19(6):2707-2711. 被引量:10
  • 4候媛彬,杜京义,汪梅.神经网络[M].西安:西安电子科技大学出版社,2007.
  • 5DLHall,JLlinas.多传感器数据融合手册[M].杨露菁,耿伯英,译.北京:电子工业出版社,2008.
  • 6L Wald. Some terms of reference in data fusion [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(31 ) :1190-1193.
  • 7郭磷.基于信息融合的交通信息采集研究[D].合肥:中国科技大学,2007.
  • 8J Liang, L Chen, X Y Cheng, et al. Multi- agent and driving behavior based rear-end collision alarm modeling and simulating [ J ]. Simulation Modelling Practice and Theory, 2010,18 ( 8 ) : 1092-1103.
  • 9SHaykin.自适应滤波器原理(第四版)[M].郑宝玉,译.北京:电子工业出版社,2006.
  • 10M Dawood, C Cappelle, M E El Naiiar, et al. Vehicle geo -localization based on IMM-UKF data fusion using a GPS receiver, a video camera and a 3D city model [ C ]// Intelligent Vehicles Symposium (IV). Piscataway: [ s. n. ] ,2011.

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部