期刊文献+

基于人工免疫分类器的入侵检测方法 被引量:4

Intrusion Detection based on Artificial Immune Classifier
下载PDF
导出
摘要 针对入侵检测系统准确率不高和难以检测未知攻击的缺点,将有限资源人工免疫分类器模型算法AIRS应用于入侵检测系统。首先从KDD CUP 99数据集中选取出部分正常数据和攻击数据,对AIRS算法进行训练。然后根据训练得到的模型,对包含已知攻击和未知攻击的不同异常类比的数据集进行测试。实验结果表明:AIRS算法对已知攻击的检测率大大提高,对未知攻击的识别率也有很大的提高。 Based on the shortcomings of intrusion detection system in which accuracy rate is not high and unknown attacks is difficult to be detected, a resource limited artificial immune classifier model algorithm AIRS is used in the intrusion detection system. A part of the normal data and attack data are selected from the KDD CUP 99 data set for training AIRS algorithm at first. Then the trained model is used to test data set with different abnormal analogy which contains known attacks and unknown attacks. The experimental results show that the AIRS algorithm has greatly improved the detection rate of known attacks and the recognition rate of unknown attacks.
出处 《智能计算机与应用》 2013年第1期75-78,共4页 Intelligent Computer and Applications
关键词 入侵检测 人工免疫分类器 免疫算法 Intrusion Detection Artificial Immune Classifier Immune Algorithm
  • 相关文献

参考文献8

二级参考文献47

  • 1钟将,吴中福,吴开贵,欧灵.基于人工免疫网络的动态聚类算法[J].电子学报,2004,32(8):1268-1272. 被引量:24
  • 2CHENZhi-xian,WANGRu-chuan,WANGShao-di,SUNZhi-xin.An Intrusion Detection System Model Based on Immune Principle and Performance Analysis[J].The Journal of China Universities of Posts and Telecommunications,2005,12(1):31-35. 被引量:8
  • 3汤凌,郑肇葆,虞欣.一种基于人工免疫的图像分割算法[J].武汉大学学报(信息科学版),2007,32(1):67-70. 被引量:16
  • 4CHITTUR A. Model generation for an intrusion detection System using genetic algorithms [J/OL]. http://wwwl, cs. col-umbia, edu/ids/publications/gaids-thesis01, pdf, 2005.
  • 5LI Wei. Using Genetic Algorithm for network intrusion detection [ C ]// Proceedings of United States Department of Energy Cyber Security Group 2004 Training Conference. Kansas : [ s. n. ] ,2004:24 - 27.
  • 6PILLAI M M, ELOFF J H P, VENTER H S. An approach to implement a network intrusion detection system using genetic algorithms [ C ]//Proceedings of SAICSIT 2004. [ S. L. ] : South Africa: South African Institute for Computer Scientists and Information Technologists, 2004:221 -228.
  • 7GOMEZ J, DASGUPTA D. Evolving fuzzy classifiers for intrusion detection [ C ]//Proceedings of the 2002 IEEE Workshop on Information Assurance. NY: West Point, 2002 : 68 - 75.
  • 8MIDDLEMISS M, DICK G. Feature selection of intrusion detection data using a hybrid genetic algorithm/ KNN approach [ C]//Design and application of hybrid intelligent systems. The Netherlands:IOS Press Amsterdam, 2003:519-527.
  • 9LU Wei, TRAORE I. Detecting new forms of network intrusion using genetic programming [ J]. Computational Intelligence, 2004, 20 : 475 - 494.
  • 10KDD99. KDD99 cup dataset[ DB/OL]. http://kdd. ics. uci. edu/databases/kddcup99, 1999.

共引文献13

同被引文献33

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部