期刊文献+

高频视角下考虑收益非对称性结构的VaR和ES风险测度 被引量:7

Rsik Management of Chinese Stock Market with Asymmetric Structure of Return in the Perspective of High-frequency Data
原文传递
导出
摘要 考虑中国股市指数收益率分布和波动的非对称性结构,采用偏t分布拟合收益率的有偏分布形态,利用RS-捕捉波动率的杠杆效应,并构建ARFIMA-GARCH和SKST-RS-模型分别预测RS-和刻画收益率波动的动态结构,进而改进VaR和ES并测度卖空限制市场的下侧风险。通过Kupiec LR和动态分位数检验,实证分析了ES和VaR的风险管理效果。结果表明:基于日内高频收益的SKST-RS-模型的VaR预测能力强于SKST-RV模型和基于日间收益率的GARCH类模型;在VaR估计市场极端风险失效时,ES能够有效地对尾部极端风险进行管理。 Considering the asymmetric structure of index return^s distribution and volatility in Chinese stock market, we use skew-t distribution to fit index return, apply RS- to capture leverage effect of volatility, construct ARFIMA-GARCH model and SKST-RS- model to forecast RS-, to depict the dynamics of volatility respectively, then calculate VaR and ES to measure down-side risk in the market with the feature of short-sale constraint. Furthermore, we analyze the effect of VaR and ES by Kupiec LR test and Dynamic quantile regression. The results show that SKST-RS- model based on high- frequency data performs batter in forecasting VaR than SKST-RV and GARCH type models based on low-frequency data. When VaR fails to estimate extreme risk in market, ES could manage extreme risk of tail efficiently.
出处 《系统工程》 CSSCI CSCD 北大核心 2013年第2期23-29,共7页 Systems Engineering
基金 国家自然科学基金资助项目(71271146 70771076) 长江学者与创新团队发展计划项目(IRT1028)
关键词 非对称性结构 偏T分布 下侧已实现半方差 VAR ES Asymmetric Structure Skew-t Distribution Downside Realised Semivariance VaR ES
  • 相关文献

参考文献13

  • 1Acerbi C, Tasche D. Expected shortfall: A natural coherent alternative to Value at Risk[J]. Economic Notes, 2002,31(2) : 379- 388.
  • 2Hansen B E. Autoregressive conditional density esti- mation [J]. International Economic Review, 1994, 35(3) :705-730.
  • 3Engle R F. Autoregressive conditional heterosked- asticity with estimates of the variance of U. K. inflation[J]. Eeonometriea, 1982,50 (4) : 987- 1008.
  • 4Corrado C, Sue T. Skewness and kurtosis in Sy.F 500 index returns implied by option prices [J]. Journal of Financial Research, 1996, 19 (2): 175 192.
  • 5Corrado C, Sue T. Implied volatility skews and stock index skewness and kurtosis in S-P 500 index option prices [J]. European Journal of Finance, 1997, 3 ( 1 ) 73-85.
  • 6Giot P, Laurent S. Modelling daily Value-at-Risk using realized volatility and ARCH type models[J]. Journal of Empirical Finance, 2004, 11 (3)z 379 398.
  • 7魏宇.有偏胖尾分布下的金融市场风险测度方法[J].系统管理学报,2007,16(3):243-250. 被引量:15
  • 8Barndorff-Nielsen 0 E, Kinnebrock S, Shephard N. Measuring downside risk realised semivariance[C]//Bollerslev T, Russell ], Watson M. Volatility and time series econometrics: Essays in honor of robert: engle. Oxford University Press,2010.
  • 9邵锡栋,殷炼乾.基于实现极差和实现波动率的中国金融市场风险测度研究[J].金融研究,2008(6):109-121. 被引量:27
  • 10Protter P. Stochastic integration and differential equations[M]. Berlin : Springer-Verlag, 1992.

二级参考文献30

  • 1徐正国,张世英.调整"已实现"波动率与GARCH及SV模型对波动的预测能力的比较研究[J].系统工程,2004,22(8):60-63. 被引量:51
  • 2唐勇,张世英.高频数据的加权已实现极差波动及其实证分析[J].系统工程,2006,24(8):52-57. 被引量:32
  • 3魏宇,余怒涛.中国股票市场的波动率预测模型及其SPA检验[J].金融研究,2007(07A):138-150. 被引量:43
  • 4Alizadeh, S. , M. Brandt, and F. Diebold, 2002, "Range-based estimation of stochastic volatility models", Journal of Finance, 57 : 1047 - 1092.
  • 5Andersen, T. , and T. Bollerslev, 1998, “Answering the skeptics: Yes, standard volatility models do provide accurate forecasts”, International Economic Review, 39:885-905.
  • 6Andersen, T. , T. Bollerslev, and F. Diebold, 2003, "Modeling and forecasting realized volatility", Econometrica, 71 : 579 - 625.
  • 7Chou, R. , 2005, “ Forecasting financial volatilities with extreme values: the Conditional Auto Regressive Range (CARR) Model”, Journal of Money Credit and Banking, 37(3) : 561 -582.
  • 8Engle, R. , and S. Manganelli, 2004, “CAViaR: Conditional autoregressive Value at Risk by regression quantiles”, Journal of Business and Economics Statistics, 22:367 -381.
  • 9Giot, P, and S. Lanrent, 2003, "Value-at-Risk for long and short positions", Journal of Applied Econometrics, 18 : 641 -664.
  • 10Giot, P, and S. Laurent, 2004, "Modeling daily value-at-risk using realized volatility and ARCH type models", Journal of Empirical Finance, 11 : 379 - 398.

共引文献39

同被引文献70

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部