期刊文献+

基于SEEW-SVM的结构损伤在线识别

Online identification of structural damage based on SEEW-SVM
下载PDF
导出
摘要 在增量式特征向量加权支持向量机(WEVLS-SVM)结构损伤在线识别方法的基础上,提出了自适应特征向量指数加权向量机(SEEW-SVM)识别方法,该方法通过增加样本与修剪算法更新样本,并根据样本贡献量的大小对特征向量自适应进行指数加权。以剪切型结构为例进行了数值模拟分析,结果表明SEEW-SVM方法与WEVLS-SVM方法相比,不仅提高了识别精度,而且大大提高了识别效率,更适用于对结构的时变参数进行在线识别。 This paper presents the self-adaptive eigenvector exponential weighted Support Vector Machine(SEEW-SVM) based on the structural damage online identification of incremental weighted eigenvector Least Square Support Vector Machine(WEVLS-SVM). This method updates the sample by incremental samples and pruned algorithm, and exponentialy weights the self adaption of eigenvector according to contribution of samples. The numerical simulations of shear building type demonstrates that in comparison with WEVLS-SVM method the proposed method greatly improves the identification precision and the computing efficiency, which adapts well to the change of structural parameters. Therefore, it is more suitable for online identification of structural damage.
出处 《世界地震工程》 CSCD 北大核心 2013年第1期70-73,共4页 World Earthquake Engineering
基金 温州市科技计划项目(S20100060)
关键词 结构损伤 系统识别 支持向量机 指数加权特征向量 structural damage system identification support vector machine exponentially weighted eigenvector
  • 相关文献

参考文献7

  • 1Suykens J A K, De Brabanter J, Lukas L, et al. Weighted least squares support vector machines : robustness and sparse approximation [ J ]. Neuro - computing 2002, 48( 1 -4) : 85 - 105.
  • 2Suykens J A K. Support vector machines: a nonlinear modeling and control perspective [ J ]. European Journal of Control, Special Issue on fundamental issues in control, 2001,7(2 -3) : 311 -327.
  • 3薛松涛,张茂雨,唐和生,陈镕.加权特征向量LS-SVM在线结构损伤识别[J].四川建筑科学研究,2007,33(3):62-66. 被引量:1
  • 4Golub G H, Van Loan C F. Matrix Computations[ M]. Baltimore MD: Johns Hopkins University Press, 1989.
  • 5Suykens J A K, Van Gestel T, De Brabanter J, et al. Least Squares Support Vector Machines [ M ]. World Scientific, Singapore, 2002.
  • 6Suykens J A K, Lukas L, and Vandewalle J. Sparse approximation using least squares support vector machines[ C ]//. Proc. of the IEEE International Symposium on Circuits and Systems (ISCAS2000), Geneva, Switzerland, 2000, 757 -760.
  • 7Cauwenberghs G, Poggio T. Incremental and decremental support vector machine leaming[C]//In:Leen T K,Dietterich T G,V. Tresp (Eds.), Advances in Neural Information Processing Systems, Cambridge, MA: MIT Press, 2001 (13) : 409 - 423.

二级参考文献7

  • 1Suykens JAK,De Brabanter J,Lukas L,Vandewalle J.Weighted least squares support vector machines:robustness and sparse approximafion[J].Neurocompufing,2002,48(1-4):85-105.
  • 2Suykens JAK.Support vector machines:a nonlinear modeling and control perspective[J].European Journal of Control,Special Issue on fundamental issues in control,2001,7(2-3):311-327.
  • 3Xiao R,Wang J,Zhang F.An approach to incremental SVM learning algorithm[G].Proc.The 12th International Conference on Tools with Artificial Intelligence,2000:268-273.
  • 4晋侃.结构损伤检测的最小二乘支持向量机回归方法研究[R].上海:同济大学,2006:29-33.
  • 5Nello Cristianini,John Shawe-Taylor.李国正,等译.支持向量机导论[M].北京:电子工业出版社,2005:30-32.
  • 6Wen Y K.Method for random vibration of hysteretic systems[J].Proceedings of ASCE,Journal of Engineering Mechanics,1976,12:249-263.
  • 7Lin J W,Raimondo B,Smyth A W,Longman R W.Online identification of nonlinear hysteretic structural systems using a variable trace approach[J].Earthquake Engineering and Structural Dynamics,2001.30(9):1279.1303.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部