期刊文献+

LS-SVM和BP-ANN在草莓糖度NIR检测中的应用 被引量:3

Application of LS-SVM and BP-ANN to Quantify Soluble Solid Content in Strawberry by NIR
下载PDF
导出
摘要 为了提高草莓糖度近红外光谱定量模型的性能,采用偏最小二乘法提取的潜在变量作为最小二乘—支持向量机和反向传播人工神经网络的输入变量,建立了草莓糖度的近红外定量模型,并与偏最小二乘模型结果进行了比较,建模所使用的光谱范围为6 000~9 000 cm-1。结果表明,所建立的最小二乘—支持向量机和反向传播人工神经网络定量模型的校正性能、预测性能和稳定性均优于偏最小二乘定量模型,最优模型为前10个潜在变量得分作为输入变量的最小二乘—支持向量机模型,其校正和预测相关系数分别为0.957和0.951,校正和预测均方根误差分别为0.279%和0.272%,剩余预测偏差为3.23,与以往研究文献相比,获得了较为理想的预测精度和稳定性能。 In order to improve performance of near infrared spectroscopy (NIR) models for quantitative analysis of solu- ble solid content (SSC) in strawberry, Least squares-support vector machine (LS-SVM) and back propagation-artificial neural networks (BP-ANN) with latent variables (LVs), extracted by partial least squares (PLS), as input were used to establish calibration models. And the performance were compared with PLS models. The spectral region used was 6000-9000 cm^-1.BP-ANN and LS-SVM models were superior to PLS model in calibration, prediction and robustness. Optimal models were obtained by LS-SVM with the first 10 LVs as input. The correlation coefficients and root mean square error of calibration and prediction were 0.957, 0.951, 0.279% and 0.272% , and the residual predictive deviation was 3.23, which were more satisfied in prediction accuracy and robustness than results reported by previous works. The results indicate that with LVs as input nonlinear methods of LS-SVM and BP-ANN offers more effective quantitative capability for SSC in strawberry.
出处 《农机化研究》 北大核心 2013年第5期204-207,共4页 Journal of Agricultural Mechanization Research
基金 河北省自然科学基金项目(C2011201096) 河北省教育厅项目(2010107)
关键词 草莓 糖度 近红外 最小二乘支持向量机 反向传播人工神经网络 潜在变量 strawberry soluble solid content near infrared spectroscopy Least squares-support vector machine back propagation-artificial neural networks latent variables
  • 相关文献

参考文献10

  • 1Kallio H, Hakala M, Pelkkikangas A M, et al. Sugars and acids of strawberry varieties [ J ]. Europe Food Resource Technology, 2000, 212: 81-85.
  • 2GBl2295-90,水果、蔬菜制品可溶性固形物含量的测定的折射仪法[S].
  • 3Ito H. Potential of Near Infrared Spectroscopy for Nonde- structive Estimation of 0Brix in Strawberries : J ]. Acta Hort, 2002, 567: 751-754.
  • 4ho H, Fukino-ho N, Horie H. Non-destructive determina- tion of soluble solids content in strawberries using near infra- red (nir) spectroscopy with fiber optics in interactance modes: what is needed for the instrument [ J]. Acta Holt, 2005, 687: 271-276.
  • 5Nishizawa T, Mori Y, Fukushima S, et al. Non-destructive Analysis of Soluble Sugar Components in Strawberry Fruits Using Near-infrared Spectroscopy [J]. Journal of the Japa-nese Society for Food Science and Technology, 2009,56 (4) :229-235.
  • 6石吉勇,邹小波,赵杰文,殷晓平.基于小波滤噪和iPLS的草莓近红外光谱糖度检测模型[J].安徽农业科学,2009,37(12):5752-5754. 被引量:7
  • 7Janik L J, Cozzolino, D, Dambergs R, et al. The prediction of total anthocyanin concentration in red-grape homogenates using visible-near-infrared spectroscopy and artificial neural networks [J]. Analytica Chimica Acta, 2007, 594: 107- 118.
  • 8Liu F, Zhang F, Jin Z L, et al. Determination of acetolac- tate synthase activity and protein content of oilseed rape (Brassica napus L. ) leaves using visible/near- infrared spectroscopy [J]. Analytica Chimica Acta, 2008, 629:56 -65.
  • 9李先锋,朱伟兴,纪滨,刘波.基于特征优化和LS-SVM的棉田杂草识别[J].农业机械学报,2010,41(11):168-172. 被引量:26
  • 10Williams P C, Sobering D C. How do we do it: a brief summary of the methods we use in developing near infrared calibrations? In Davies, A. M. C., & Williams, P. C. (Eds.), Near Infrared Spectroscopy: The Future Waves [M]. Chichester: NIR Publications, 1996: 185-188.

二级参考文献14

  • 1邹小波,赵杰文.用遗传算法快速提取近红外光谱特征区域和特征波长[J].光学学报,2007,27(7):1316-1321. 被引量:44
  • 2H u M K. Visual pattern recognition by moment invariants[ J]. IRE Transaction Information Theory, 1962,8(2) :179 - 187.
  • 3Chen Chaur-Chin. Improved movement invariants for shape discrimination [ J ]. Pattern Recognition, 1993, 26 (5) : 683 - 686.
  • 4Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [ J ]. Neurocomputing, 2002,48 ( 1 ) : 85 - 105.
  • 5Kennedy J. The particle swarm : social adaptation of knowledge [ C ] ////Proceedings of IEEE International Conference on Evolutionary Computation, Indianapolis, Indiana, USA,1997.
  • 6Naeem A M, Irshad Ahmad, Muham Mad Islam, et al. Weed classification using angular cross sectional intensities for real- time selective herbicide applications [ C ] // Proceedings of the International Conference on Computing: Theory and Applications, 2007 : 70 - 74.
  • 7Liu Huan, Yu Lei. Toward integrating feature selection algorithms for classification and clustering[ J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17 (5) :491 - 502.
  • 8Woebbecke D M, Meyer G E. Color indices for weed identification under various soil, residue, and lighting conditions[ J]. Transactions of the ASAE, 1995, 38 ( 1 ) :259 -269.
  • 9罗瑜,易文德,王丹琛,何大可.大规模数据集下支持向量机训练样本的缩减策略[J].计算机科学,2007,34(10):211-213. 被引量:13
  • 10袁海波,史岩,梁安波,葛艳艳.基于神经网络的杂草识别试验研究[J].机电工程,2008,25(4):28-30. 被引量:4

共引文献31

同被引文献37

  • 1褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542. 被引量:569
  • 2金同铭,崔洪昌.检测草莓果中多组分的新方法──近红外光谱法[J].华北农学报,1994,9(2):120-123. 被引量:7
  • 3傅霞萍,应义斌,刘燕德,陆辉山.水果坚实度的近红外光谱检测分析试验研究[J].光谱学与光谱分析,2006,26(6):1038-1041. 被引量:66
  • 4Schmilovitch Z, Mizrach A, Hofman A, et al. Determination of mango physiological indices bynear-infrared spectrometry [J]. Postharvest Biology and Technology,2000,19(3):245-252.
  • 5Lu R. Predicting firmness and sugar content of sweet cherries using near - infrared difuse reflectance spectroscopy [ J ]. Transactions of the ASAE,2001,4d(5) : 1265-1271.
  • 6Lu Ariana D. A near-infrared sensing technique for measuring internal quality of apple fruit [ J ]. Applied Engineering in Agriculture, 2002,18 ( 5 ) :585-590.
  • 7Park B, Abbott J A, Lee K J, et al. Near-infrared difuse reflectance for quantitative and qualitative measurement of soluble solids and firmness of delicious and Gala apples [ J]. Transactions of the ASAE ,2003, 46(6) : 1721-1731.
  • 8Gomez A H, He Y, Pereira A G. Non-destructive measure- ment of acidity, soluble solids and firmness of Satsuma man- darin using Vis/NIR-speetroscopy techniques [ J ]. Journal of Food Engineering,2006, 77 ( 2 ) : 313-319.
  • 9Perez-Marin D, Paz P, Guerrero Jose-Emilio et al. Minia- ture handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums [ J ]. Journal of Food Engineering, 2010, 99 ( 3 ) : 294-302.
  • 10Louw D. E, Theron I. K. Robust prediction models for quality parameters in Japanese plums (Prunus salicina L. ) using NIR spectroscopy [J]. Postharvest Biology and Tech- nology,2010, 58(3) : 176-184.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部