摘要
The stoichiometric ratios and related regimes, which can promote anti-flooding of polymer electrolyte membrane fuel cell (PEMFC) with in-plate adverse-flow flow-field (IPAF), were investigated. Two flow combinations, which are the simple and complex adverse-flow between plates (ABP) that can be realized by IPAF, were employed. Constant stoichiometric ratios examination indicates that the complex ABP could improve anti-flooding of PEMFC better in the medium (greater than 200 mA/cm2 and less than 1 000 mA/cm2) and high (greater than 1 000 mA/cm2) current densities than the simple ABP. More stoichiometric ratios were introduced to find the cathode critical stoichiometry. Under the condition of cathode critical stoichiometry, the maximal local relative humidity of both electrodes of complex ABP is equal to 100% and below while the anti-flooding of the cathode of simple ABP is not satisfactory in the medium and high current densities. Further study shows that the mechanism of fuel cell, which is the imerdependence between the electrodes effect, can make significant contribution to anti-flooding.
The stoichiometric ratios and related regimes, which can promote anti-flooding of polymer electrolyte membrane fuel cell (PEMFC) with in-plate adverse-flow flow-field (IPAF), were investigated. Two flow combinations, which are the simple and complex adverse-flow between plates (ABP) that can be realized by IPAF, were employed. Constant stoichiometric ratios examination indicates that the complex ABP could improve anti-flooding of PEMFC better in the medium (greater than 200 mA/cm2 and less than 1 000 mA/cm2 ) and high (greater than 1 000 mA/cm2 ) current densities than the simple ABP. More stoichiometric ratios were introduced to find the cathode critical stoichiometry. Under the condition of cathode critical stoichiometry, the maximal local relative humidity of both electrodes of complex ABP is equal to 100% and below while the anti-flooding of the cathode of simple ABP is not satisfactory in the medium and high current densities. Further study shows that the mechanism of fuel cell, which is the interdependence between the electrodes effect, can make significant contribution to anti-flooding.
基金
Project(20976095) supported by the National Natural Science Foundation of China
Project(2012CB215500) supported by the National Basic Research Program of China
Project(20090002110074) supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China
Projects(2012AA1106012, 2012AA053402) supported by the National Hi-tech Research and Development Program of China