期刊文献+

宏观经济调控理论的发展演变与调控模式的比较研究 被引量:2

The Comparative Study of the Macro-Economy Theory Evolvtion and Its Adjustive Mode
原文传递
导出
摘要 宏观经济调控是各个国家共同关注的问题 ,国家调节与市场结合方式的选择是 90年代经济学的主要线索之一。混合经济中的宏观调控与过渡经济中的宏观调控各有特点 ,对其加以研究有利于我们确立社会主义市场经济体制。 The macroeconomy adjustment is an issue of various nations pay closely attention to The mode selection of government adjustment combining market is a mostly economy clue in 90 decades The mixed economy and transitional economy have different charcteristis Studying it benefits our socialism market economy system
作者 郑伟林
出处 《清华大学学报(哲学社会科学版)》 CSSCI 2000年第5期29-34,共6页 Journal of Tsinghua University(Philosophy and Social Sciences)
关键词 混合经济 过渡经济 宏观调控模式 mixed-economy transitional-economy macro-adjust mode compare
  • 相关文献

参考文献3

  • 1(美)布鲁斯·金格马(BruceR.Kingma)著,马费成,袁红.信息经济学[M]山西经济出版社,1999.
  • 2(美)R.多恩布什(RudigerDornbusch),(美)S.费希尔(StanleyFischer)著,李庆云,刘文忻校.宏观经济学[M]中国人民大学出版社,1997.
  • 3(美)哈尔·瓦里安(HalR.Varian)著,周洪等.微观经济学[M]经济科学出版社,1997.

同被引文献13

  • 1道格拉斯·C·诺思著 陈郁 罗华平译.经济史的结构与变迁[M].上海:上海三联书店,1994..
  • 2Lam W,Bacchus F.Learning Bayesian belief networks: An approach based on the MDL principle [J].Computational Intelligence,1994,10(7): 269293.
  • 3Dean T L,Kanazawa K.Probabilistic temporal reasoning [A].Mitchell T M,Smith R G.Proc of 7th National Conference on Artificial Intelligence [C].Madison,Wisconsin: AAAI Press,1988.524528.
  • 4Friedman N,Murphy K,Russell S.Learning the structure of dynamic probabilistic networks [A].Cooper G F,Moral S.Proc of 14th Conf on Uncertainty in Artificial Intelligence [C].San Francisco: Morgan Kaufmann,1998.139147.
  • 5Dechter R,Rish I.A scheme for approximating probabilistic inference [A].Geiger D,Shenoy P.Proc of 13th Conf on Uncertainty in Artificial Intelligence [C].San Francisco: Morgan Kaufmann,1997.132141.
  • 6Boyen X,Koller D.Tractable inference for complex stochastic processes [A].Cooper G F,Moral S.Proc of 14th Conf on Uncertainty in Artificial Intelligence [C].San Francisco: Morgan Kaufmann,1998.3342.
  • 7Zweig G,Russell S.Speech recognition with dynamic Bayesian networks [A].Rich C,Mostow J.Proc of 15th National Conference on Artificial Intelligence [C].Madison,Wisconsin: AAAI Press,1998.173180.
  • 8Tian F,Zhang H,Lu Y,et al.Inference and modeling of multiply sectioned Bayesian networks [A].Yuan B,Tang X.2002 IEEE Region 10 Conference on Computer,Communication,Control and Power Engineering Proceedings [C].Beijing: People's Posts & Telecommunications Publishing House,2002.683686.
  • 9Tian F,Lu Y,Shi C.Learning Bayesian networks with hidden variables using the combination of EM and evolutionary algorithm [A].Cheung D W,Williams G J,Li Q.Proc of 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining [C].Berlin: Springer-Verlag,2001.568574.
  • 10刘洪.非线性系统理论与预测研究新范式[J].预测,1999,18(2):1-6. 被引量:11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部