期刊文献+

模拟仿真在医学数学建模中的应用研究 被引量:1

Application of Simulation in Medical Mathematical Model
原文传递
导出
摘要 传染病频繁爆发,严重威胁人类健康,目前面临着研究困难,病情难以控制的局面,建立数学模型成为一种重要的研究手段。采用数学模型模拟传染病发病、传播过程,用计算机仿真求解数学模型。介绍了模拟仿真技术及原理,以及在实际应用过程中如何建立模型、模拟仿真的流程和方法。计算机仿真具有计算方式简单、过程易控制、结构灵活等优点,便于微分方程求解,能够更好地为传染病提供防治措施。 For the frequent break-out health and many difficulties in the research of infectious disease and the serious threat to human infectious disease in the control of disease situation the establishment of mathematical model becomes an important means in simulating infectious disease incidence and propagation, solving the mathematical model with computer simulation. The simulation technology and its principle, and how to establish the moder and its simulation process in the practical application are described and simulation process and method. Computer simulation is simple in calculation easy in process control, flexible in structure, and also easy in solution of differential equations, and thus could provide prevention and control measures for the infectious diseases.
机构地区 齐齐哈尔医学院
出处 《通信技术》 2013年第4期136-138,共3页 Communications Technology
基金 齐齐哈尔市科技局科研项目
关键词 传染病 数学模型 计算机仿真 infectious disease mathematical model" computer simulation
  • 相关文献

参考文献9

二级参考文献68

  • 1高淑京,滕志东.一类具饱和传染力和常数输入的SIRS脉冲接种模型研究[J].生物数学学报,2008(2):209-217. 被引量:14
  • 2尤秉礼.常微分方程补充教程[M].北京:人民教育出版社,1982..
  • 3ZHANG YAN, LUO J, HU HONG-LIN.无线网状网:架构、协议与标准[M].郭达,张勇,彭晓川,等译.北京:电子工业出版社,2008.
  • 4D'Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model. Mathematical Biosciences, 2002, 179(1): 57-72.
  • 5Li Michael Y, Smith Hall, Wang Liancheng. Global dynamics of an SEIR epidemic model with vertical transmission. SIAM Journal on Applied Mathematics, 2001, 62(1): 58-69.
  • 6Meng Xinzhu, Chen Lansun, Cheng Huidong. Two profitless delays for theSEIRS epidemic disease model with nonlinear incidence and pulse vaccination. Applied Mathematics and Computation, 2007, 186(1): 516-529.
  • 7Fine P M. Vectors and vertical transmission: An epidemiologic perspective. Annals of the New York Academy of Sciences, 1975, 266(11): 173-194.
  • 8Busenberg S, Cooke K L, Pozio M A. Analysis of a model of a vertically transmitted disease. Journal of Mathematical Biology, 1983, 17(3): 305-329.
  • 9Cook K L, Busenberg S N. Vertical transmission diseases: Nonlinear Phenomena in Mathematical Sciences. World Sciences, Singapore, 1982.
  • 10Meng Xinzhu, Chen Lansun. The dynamics of a new SIR epidemic model concerning pulse vaccination strategy. Applied Mathematics and Computation, 2008, 197(2): 582-597.

共引文献137

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部