期刊文献+

具有摩擦和记忆性的非线性波动方程一致能量衰减估计(英文)

Uniform Energy Decay Estimation for Nonlinear Wave Equation with Friction and Memory
下载PDF
导出
摘要 考虑一类非线性粘弹性波动方程utt-κ0Δu+∫t0g(t-s)div[a(x)u(s)]ds+b(x)h(ut)=f(u),(x,t)∈Ω×(0,∞)的初边值问题.在对函数g,h和f比较弱的假设下,通过引入简单的Lyapunov泛函和精确先验估计证明了能量一致衰减. In this paper we consider a class of nonlinear viscoelastic wave equation uu-κ0△u+∫0g(t-s)div[a(x)△u(s)]ds+b(x)h(ut)=f(u),(x,t)∈Ω×(0,∞)with initial-boundary conditions. Under weaker assumptions on the functions g,h and f, the uniform energy decay are proved by introducing very simple Lyapunov functional and precise priori estimates.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2013年第2期33-42,共10页 Journal of Qufu Normal University(Natural Science)
基金 supported by the National Natural Science Foundation of China(11201258) the Natural Science Foundation of Shandong(ZR2011AM008,ZR2011AQ006,ZR2012AM010) STPF of University in Shandong(J09LA04)
关键词 指数衰减 多项式衰减 松弛函数 记忆性 exponential decay polynomial decay relaxation function memory
  • 相关文献

参考文献21

  • 1Bardos C, Lebeau G, Rmch J. Sharp sufficient conditions for the observation, control, and stabilization of waves from the bound-ary [J]. SIAM J Control Optim, 1992, 30: 1024-1065.
  • 2Boussouira F A, Cannarsa P, Sforza D. Decay estimates for second order evolution equations with memory [ J l- J Functional A- nal, 2008, 254 : 1342-1372.
  • 3Cavalcanti M M, Domingos Cavalcanti V N, Prates Filho J S, et al. Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping [ J ]. Differential Integral Equations, 2001, 14:85-116.
  • 4Cavalcanti M M, Domingos Cavalcanti V N, Soriano J A. Exponential decay for the solution of semilinear viscoelastic wave equa- tions with localized damping [J]. Electron J Differential Equations, 2002, 44:1-14.
  • 5Cavalcanti M M, Oquendo H P. Frictional versus viscoelastic damping in a semilinear wave equation [ J ]. SIAM J Control Op- tim, 2003, 42(4):1310-1324.
  • 6Cavalcanti M M, Domingos Cavalcanti V N, Martinez P. General decay rate estimates for viscoelastic dissipative systems [ J ]. Nonlinear Anal, 2008, 68 : 177-193.
  • 7Fushan Li, Yuzhen Bai. Uniform rates of decay for nonlinear viscoelastic Marguerre-von Karman shallow shell system[ J]. J Math Anal Appl, 2009,351:522-535.
  • 8Fushan Li. Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Karman shallow shells system [ J ]. J Differential Equations, 2010, 249 : 1241-1257.
  • 9Lasiecka I, Tataru D. Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping [ J. Differ- ential Integral Equations, 1993, 6:507-533.
  • 10Messaoudi S A. On the control of solutions of a viscoelastic equation[ J]. Journal of the Franklin Institute, 2007, 344:765-776.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部