摘要
考虑一类非线性粘弹性波动方程utt-κ0Δu+∫t0g(t-s)div[a(x)u(s)]ds+b(x)h(ut)=f(u),(x,t)∈Ω×(0,∞)的初边值问题.在对函数g,h和f比较弱的假设下,通过引入简单的Lyapunov泛函和精确先验估计证明了能量一致衰减.
In this paper we consider a class of nonlinear viscoelastic wave equation uu-κ0△u+∫0g(t-s)div[a(x)△u(s)]ds+b(x)h(ut)=f(u),(x,t)∈Ω×(0,∞)with initial-boundary conditions. Under weaker assumptions on the functions g,h and f, the uniform energy decay are proved by introducing very simple Lyapunov functional and precise priori estimates.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2013年第2期33-42,共10页
Journal of Qufu Normal University(Natural Science)
基金
supported by the National Natural Science Foundation of China(11201258)
the Natural Science Foundation of Shandong(ZR2011AM008,ZR2011AQ006,ZR2012AM010)
STPF of University in Shandong(J09LA04)
关键词
指数衰减
多项式衰减
松弛函数
记忆性
exponential decay
polynomial decay
relaxation function
memory