摘要
利用 Elman动态递归神经网络 ,对非线性结构进行黑箱辨识 ,建立了它的非线性状态方程 ;提出了加快网络收敛速度的自适应学习算法。辨识结果表明 ,动态递归网络模型优于传统辨识模型 ,适于非线性、不确定结构的辨识。
In this paper, the Elman’s recurrent neural network is developed to identify non linear structure in block box, and a nonlinear state space model of structure is determined. An accelerated adaptive learning rate algorithm is proposed. Results of identification show that the Elman’s recurrent model is superior to the traditional model. It is adaptive to the identification of the non linear and uncertain structure.
出处
《应用力学学报》
CAS
CSCD
北大核心
2000年第2期110-113,共4页
Chinese Journal of Applied Mechanics
基金
国家自然科学基金资助项目!( 5963 51 4 0)
关键词
非线性结构
动态递归神经网络
辨识
结构振动
non linear structure, dynamic recurrent neural network, identification.