摘要
本文首先给出了定常温度热弹性 Biot[1]通解的一种新的简化形式,它看起来与各向同 性弹性力学的Papkovich-Neuber 通解十分相象,而后由此出发,由一般的各向同性弹性板推 广到本文的热弹性板问题,研究了热弹性板的问题,在没有任何预先假设的前提下,应用Lur’e 算子法,证明了此通解不失一般性,导出了热弹性板精化理论的控制微分方程。
In this paper a new simplified form of Biot's general solution for the steady thermoelastic plates is given first. It looks like the famous Papkovich-Neuber's general solution of isotropic elastic mechanics. Generalized from problems of isotropic elastic plates, the problems of thermoelastic plates are focused A new refined plate theory is derived by using Lur'e operator from the Biot's general solution given above without any prior hypothesis. In the meantime, the proof that the Biot's general solution does not lose any generality is given.
出处
《工程力学》
EI
CSCD
北大核心
2000年第2期111-118,141,共9页
Engineering Mechanics
基金
国家自然科学基金!19772004
关键词
热弹性板
精化板理论
热弹性力学
定常温度
thermoelastic plate, refined theory of plate
thermoelasticity, elastic general solution