期刊文献+

基于数据挖掘技术的老年口腔癌患者围术期并发症发生概率评估系统的建立 被引量:2

Establishment of an evaluation system based on data mining tech aimed for predicting the rate of perioperative complications in old oral cancer patients
下载PDF
导出
摘要 目的:开发一种具有较强临床实用性的老年口腔癌患者围术期并发症发生概率评估系统,使得相关并发症发生概率的评估更加直观与高效。方法:根据APACHEⅡ以及POSSUM评分体系,结合临床实际,确定核心数据项目。采用数据挖掘方法,分析各项临床数据之间潜在的逻辑关系,并以CAG为平台,开发评估系统。结果:历时7个月,整理收集并回顾性录入513个病例的临床数据,建立包含49个临床录入项目的 50×513维数据集(数据库)。经过一系列测试后,采用随机森林算法作为核心算法,建立预测评估模型,进而开发出预测系统(软件),为系统设置自我学习功能,并计划添加数据导出与网络化功能。结论:本评估系统在老年口腔癌患者围术期并发症发生概率的预测中具有较高的临床实用性。 PURPOSE: To establish an evaluation system based on data mining tech aimed for predicting the rate of perioperative complications in old oral cancer patients with better clinical application. METHODS: Combined APACHE Ⅱ and POSSUM system as well as clinical reality, the key factors and the logical relationship were found. By using the CAG program, the evaluation system was established. RESULTS: Within the period of 7 months, the clinical data of 513 patients were collected, and an data sets sized as 50×513 with 49 key factors was finished. After some tests, the Radom Forest (RF) was chosen as the main algorithm of the model of the evaluation system (program). The system had the ability for self-study, and is planed to add the function of data output and interact use. CONCLUSION: The evaluation system is good for clinical use to predict the rate of pefioperative complications in old oral cancer patients. Supported by Grant from Shanghai Municipal Bureau of Health (2009076) and the Fifth Innovation Plan for Students of Shanghai University (IAP5145).
出处 《中国口腔颌面外科杂志》 CAS 2013年第2期145-149,共5页 China Journal of Oral and Maxillofacial Surgery
基金 上海市卫生局资助项目(2009076) 第五期上海市大学生创新性实验项目(IAP5145)~~
关键词 老年人 口腔癌 数据挖掘 围术期并发症 Old patients Oral cancer Data mining Perioperative complication
  • 相关文献

参考文献5

  • 1Copeland GP, Jones D, Waiters M. POSSUM: a scoring system for surgical adult[J]. Br J Surg, 1991, 78(3): 355-360.
  • 2Houston AL, Chen H, Hubbard SM, et al. Medical data mining on the internet: research on a cancer information system[J]. Artif Intell Rev, 1999, 13(5-6): 437-466.
  • 3HartJW,MichelineK.数据挖掘概念与技术[M].范明,译.北京:机械工业出版社.2001.
  • 4Agrawal R, Srikant R. Fast algorithms for mining association rules[A]. Proceedings of the 20th International Conference on Very Large Data Bases[C]. Santiago: Morgan Kaufmann,1994:487-499.
  • 5Agrawal R, Sharer JC. Parallel mining of association rules [J]. IEEE Trans Knowl Data Eng, 1996, 8(6): 962-969.

共引文献1

同被引文献15

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部