期刊文献+

旋转圆环受迫振动响应的行波解 被引量:1

FORCED VIBRATION ANALYSIS OF ROTATING RING WITH WAVE PROPAGATION METHOD
下载PDF
导出
摘要 应用行波法求解旋转圆环的受迫振动响应问题。以静止坐标系中旋转、扩张弯曲梁的振动方程为基础,应用弹性固体中的波动理论,给出旋转圆环中波模式、波传递矩阵及受迫响应解。研究表明,在旋转弯曲梁段中,正方向与负方向上波的传播特性相异;将外激励等效为间断节点模型,考虑几何连续性条件和力的平衡条件,可获得旋转圆环上任意点处位移响应的表达式。通过行波方法求得的结果反映旋转圆环的动态特性,并可有效地计算旋转圆环的受迫振动响应。 The wave propagation was used to analyze the forced vibration characteristics of a rotating ring. Governing equations of motion, basing on the Hamilton principle and the Euler-Bernoulli beam theory, were developed for extensional curved beams with rotating speed under an absolute coordinate system. By using the theorem of wave motion in an elastic solid, the propagation characters of elastic wave guides, wave transfer matrix and forced vibration response were analyzed. The result of analysis showed that waves on the positive direction was different form ones on the negative direction. According to modeling external forces as discontinuous joints, and with consideration of the continuity condition and the equilibrium condition, an equation of displacement responses at any position within the ring was obtained. The numeric computation results illustrated that the equation, solved by wave propagation method, was able to determine forced vibration responses of the rotating ring; the wave propagation is efficiency in the prediction of forced vibration behaviors that are associated with rotating rings.
出处 《机械强度》 CAS CSCD 北大核心 2013年第2期119-126,共8页 Journal of Mechanical Strength
基金 国家自然科学基金重大研究计划资助项目(90716027)
关键词 行波 旋转圆环 受迫振动 响应 Wave propagation Rotating ring Forced vibration Response
  • 相关文献

参考文献13

  • 1Love A E H. A treatise on the mathematical theory of elasticity [ M]. New York: Dover Publications, 1944: 17-25.
  • 2Morley L S D. Elastic waves in a naturally curved rod [ J ]. Quarterly Journal of Mechanics and Applied Mathematics, 1961, 14: 155-172.
  • 3Graft K F. Wave motion in elastic solids [ M]. New York: Oxford University Press, 1975 : 1-581.
  • 4Mallik A K, Mead D J. Free vibration of thin circular rings on periodic radial supports [ J ]. Journal of Sound and Vibration, 1977, 54(1) : 13-27.
  • 5Mead D J. Waves and modes in finite beams: application of the phase-closure principle [ J ]. Journal of Sound and Vibration, 1994, 171(5) : 695-702.
  • 6Mace B R. Wave reflection and transmission in beams [ J]. Journal of Sound and Vibration, 1984, 97(2) : 237-246.
  • 7Mei C, Mace B R. Wave reflection and transmission in Timoshenko beams and wave analysis of Timoshenko beam structures [ J ]. Transactions of the ASME, Journal of Vibration and Acoustics, 2005, 127(4) : 382-394.
  • 8任建亭,姜节胜.阶梯压电层合梁的波动动力学特性[J].力学学报,2004,36(5):540-548. 被引量:4
  • 9Tan C A, Kang B. Wave reflection and transmission in an axially strained, rotating Timoshenko shaft [ J ]. Journal of Sound and Vibration, 1998, 213 (3) : 483-510.
  • 10Kang B, Riedel C H, Tan C A. Free vibration analysis of planar curved beams by wave propagation [ J ]. Journal of Sound and Vibration, 2003, 260( 1 ) : 19-44.

二级参考文献22

  • 1任建亭,邓长华,姜节胜.基于行波方法的智能悬臂梁振动控制[J].振动工程学报,2006,19(1):98-103. 被引量:7
  • 2程伟,诸德超,王大钧.梁波传播的固有特性[J].力学学报,1997,29(2):175-181. 被引量:7
  • 3Love A E H. A treatise on the mathematical theory of elasticity [M]. New York: Dover Publications, 1944: 17-25.
  • 4Morley L S D. Elastic waves in a naturally curved rod [J]. Quarterly Journal of Mechanics and Applied Mathematics, 1961, 14: 155-172.
  • 5GraffK F. Wave motion in elastic solids [M]. New York: Oxford University Press, 1975: 195-201.
  • 6Mallik A K, Mead D J. Free vibration of thin circular rings on periodic radial supports [J]. Journal of Sound and Vibration, 1977, 54(1): 13-27.
  • 7Mead D J. Waves and modes in finite beams: application of the phase-closure principle [J]. Journal of Sound and Vibration, 1994, 171(5): 695-702.
  • 8Mace B R. Wave reflection and transmission in beams [J]. Journal of Sound and Vibration, 1984, 97(2): 237-246.
  • 9Mei C, Mace B R. Wave reflection and transmission in Timoshenko beams and wave analysis of Timoshenko beam structures [J]. Transactions of the ASME, Journal of Vibration and Acoustics, 2005, 127(4): 382-394.
  • 10Tan C A, Kang B. Wave reflection and transmission in an axially strained, rotating Timoshenko shaft[J]. Journal of Sound and Vibration, 1998, 213(3): 483-510.

共引文献6

同被引文献10

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部