期刊文献+

纯钛材离子渗氮后在Hank’s人工模拟体液中的电化学性能 被引量:2

Electrochemical Behavior and Corrosion Resistance of Ion Nitriding Layer on Titanium Substrate in Artificially Simulated Body Solution
下载PDF
导出
摘要 为了提高纯钛材的表面硬度及耐蚀性,使之更适应人体环境,对铸态纯钛材表面进行离子渗氮。利用能谱仪、X射线衍射仪、扫描电镜及显微硬度计研究了渗氮钛材的成分、相结构、形貌及硬度,利用动电位极化曲线及交流阻抗谱对比研究了纯钛材及离子渗氮钛材在37℃的Hank’s人工模拟体液中的电化学行为。结果表明:经过650℃渗氮处理后,铸态纯钛材表面形成了17μm的梯度渗氮层,其相组成为α-Ti(N),Ti2N,TiN;表面显微硬度约为(650±20)HV,为铸态纯钛材的2.3倍;离子渗氮钛材的耐蚀性明显提高。 As-cast Ti substrate was ion nitridized so as to increase the surface hardness and corrosion resistance as well as compatibility to human body.The elemental composition,phase structure,and morphology of as-obtained ion nitriding layer were analyzed with an energy dispersive spectrometer,an X-ray diffractometer,and a scanning electron microscope,while its hardness was measured with a hardness meter.Moreover,the electrochemical behavior and corrosion resistance of as-cast Ti substrate and the ion nitriding layer in Hank' s solution of 37 ℃ were comparatively investigated based on measurements of potentiodynamic polarization curves and alternating current impedance spectra.It was found that a gradient ion nitriding layer with a thickness of 17 μm was formed on Ti substrate surface after ion nitriding at 650 ℃.As obtained ion nitriding layer consisted of α-Ti(N),Ti2 N and TiN.Moreover,the ion nitriding layer had a hardness of about(650 ±20) HV,which was 2.3 times as much as that of the Ti substrate,while the Ti substrate after ion nitriding possessed greatly improved corrosion resistance.
出处 《材料保护》 CAS CSCD 北大核心 2013年第4期29-31,8,共3页 Materials Protection
基金 辽宁省高等学校杰出青年学者成长计划(LJQ2011033) 辽宁省自然科学基金项目(201202127)资助
关键词 离子渗氮 纯钛材 Hank’s人工模拟体液 电化学行为 显微硬度 耐蚀性 ion nitriding titanium Hank' s solution electrochemical behavior hardness corrosion resistance
  • 相关文献

参考文献7

二级参考文献143

共引文献95

同被引文献36

  • 1骆小平,郭天文,张建中,张霄炎.中国口腔钛铸造技术的研究现状[J].中华口腔医学杂志,2005,40(1):21-22. 被引量:6
  • 2张琦,陶涛,齐峰,刘艳文,冷永祥,黄楠.非平衡磁控溅射氮化钛薄膜及其性能研究[J].真空科学与技术学报,2007,27(2):163-167. 被引量:17
  • 3Yu S, Yu Z, Han, et al. Haemocompatibility of Ti-3Zr-2Sn- 3Mo-25Nb biomedical alloy with surface heparinization using electrostatic self assembly technology[J]. Trans NonferrousMet Soc, 2012, 22(12): 3046-3052.
  • 4Oliveira VMCA, Aguiar C, Vazquez AM, et al. Improving corrosion resistance of Ti-6A1-4V alloy through plasma- assisted PVD deposited nitride coatings[J]. Corros Sci, 2014, 88: 317-327.
  • 5Farokhzadeh K, Edrisy A, Pigott G, et al. Scratch resistance analysis of plasma-nitrided Ti-6A1-4V alloy[J]. Wear, 2013, 302(1/2): 845-853.
  • 6Laurent F, Grosgogeat B, Reclaru L, et al. Comparison of corrosion behaviour in presence of oral bacteria[J]. Biomaterials, 2001, 22(16): 2273-2282.
  • 7Mirjalili M, Momeni M, Ebrahimi N, et al. Comparative study on corrosion behaviour of Nitinol and stainless steel orthodontic wires in simulated saliva solution in presence of fluoride ions[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(4): 2084-2093.
  • 8Long M, Rack HJ. Titanium alloys in total joint replacement: a materials science perspective[J]. Biomaterials, 1998, 19(18): 1621-1639.
  • 9Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate c, hoice for orthopaedic implants: a review[J]. Progress in Materials Science, 2009, 54(3): 397-425.
  • 10Huang W, Wang Z, Liu C, et al. Wear and electrochemical corrosion behavior of biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological solutions[J]. J Bio Tribo Corros, 2014, 1(1): 1-10.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部