期刊文献+

基于遗传算法优化神经网络瓦斯浓度预测 被引量:2

Prediction of coal gas density by optimized neural network based on genetic algorithm
原文传递
导出
摘要 针对煤矿安全生产,将遗传神经网络应用到煤矿瓦斯浓度预测中,BP神经网络初始权值和阈值通过遗传算法优化。用MATLAB进行仿真测试,并与单纯使用BP网络预测进行了对比。结果表明,优化后的网络具有训练时间短、精度高等特点,对瓦斯浓度的预测有效。 In order to ensure safe production in collieries, the genetic neural network was applied to the prediction of the coal gas density, and initial weight and threshold of BP neural network were optimized by the genetic algorithm. MALTAB was applied to simulation, which was contrasted with the prediction by BP network. It was showed that the optimized network was characterized by short training duration, high precision and effectiveness in prediction of coal gas densitv.
出处 《矿山机械》 北大核心 2013年第4期117-120,共4页 Mining & Processing Equipment
基金 山西省自然科学基金资助项目(2011011011-1)
关键词 BP神经网络 遗传算法 瓦斯浓度预测 BP neural network genetic algorithm prediction of coal gas density
  • 相关文献

参考文献4

二级参考文献23

共引文献87

同被引文献13

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部