期刊文献+

红外飞秒激光逐点刻写光纤布拉格光栅的束斑优化 被引量:1

Improvement of Beam-Spot Size in Fiber Bragg Grating Inscribed Point-by-Point with Infrared Femtosecond Laser
原文传递
导出
摘要 用红外飞秒激光逐点刻写低阶光纤布拉格光栅(FBG),光束精确聚焦到光纤纤芯形成很小的光斑是至关重要的。把光纤看作柱透镜,理论分析和用Zemax软件仿真了单个物镜聚焦和柱透镜-物镜组合聚焦两种情况下光纤纤芯的光斑尺寸。单个物镜聚焦时光纤纤芯的光斑尺寸理论计算为0.67μm×84μm,仿真为2.6μm×76μm;柱透镜-物镜组合聚焦时光纤纤芯的光斑尺寸理论计算为3.76μm×0.67μm,仿真为4.1μm×2.2μm。发现利用柱透镜-物镜组合聚焦在纤芯能得到很小的光斑,光纤轴向尺寸大大缩小,这为制作低阶光纤布拉格光栅提供了可能性和基础。 It is important that the light beam is focused into fiber core precisely with a small size when low-order fiber Bragg grating (FBG) is inscribed point-by-point with infrared femtosecond laser. The beam-spot size in fiber core is analyzed theoretically and simulated with Zemax software in the cases of focusing with an objective lens and focusing with an objective lens combined with a cylindrical lens separately when the optical fiber is thought as a cylindrical lens. The beam size is 0.67 μm×84 μm theoretically and 2.6 μm×76 μm simulatively separately when focusing using an objective lens, and the beam size is 3.76 μm×0.67 μm theoretically and 4.1 μm×2.2 μm simulatively separately when focusing using an objective lens combined with a cylindrical lens. It is found that the beam-spot size in the core can become very small when focusing using an objective lens combined with a cylindrical lens. This conclusion will provide possibility and basis for the fabrication of low-order FBG.
出处 《激光与光电子学进展》 CSCD 北大核心 2013年第4期133-138,共6页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61275185) 陕西省教育厅科学研究计划(2010JK716)资助课题
关键词 激光技术 光栅 逐点 红外飞秒激光 束斑尺寸 laser technique gratings point-by-point infrared femtosecond laser beam-spot size
  • 相关文献

参考文献16

二级参考文献108

共引文献39

同被引文献17

  • 1王义平,陈建平,李新碗,周俊鹤,沈浩,施长海,张晓红,洪建勋,叶爱伦.快速可调谐电光聚合物波导光栅[J].物理学报,2005,54(10):4782-4788. 被引量:6
  • 2D Runde, S Brunken, C E Ruter, et al.. Integrated optical electric field sensor based on a bragg grating in lithium niobate[J]. Appl Phys B, 2007, 86(1): 91-95.
  • 3X S Qian, H Wu, Q Wang, et al.. Electro-optic tunable optical isolator in periodically poled LiNbO[J]. J Appl Phys, 2011, 109(5): 053111.
  • 4Allan S P Chang, Keith J Morton, Hua T, et al.. Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography[J]. IEEE Photon Technol Lett, 2007, 19(19): 1457-1459.
  • 5H Herrmann, K D Buchter, R Ricken, et al.. Tunable integrated electro-optic wavelength filter with programmable spectral response[J]. Lightwave Technol, 2010, 28(7): 1051-1056.
  • 6D Grobnic, S J Mihailov, C W Smelser, et al.. Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask[J]. IEEE Photon Technol Lett, 2005, 17(7): 1453-1455.
  • 7Jin W, Chiang K S, Liu Q. Electro-optic long-period waveguide gratings in lithium niobate[J]. Optics Express, 2008, 16 (25): 20409-20417.
  • 8Li Kejia. Design on Electro-optical Tunable ROADM Based on Lithium Niobate Waveguide[D]. Tianjin: Tian Jin university, 2008: 41-43.
  • 9S Z Yin. Lithium niobate fibers and waveguides: fabrication and application[J]. Proceeding of IEEE, 1999, 87(11): 1962-1974.
  • 10Z Q Cao. The Transfer Matrix Method in Guided-Wave Optics[M]. Shanghai: Shanghai Jiao Tong University Press, 2000: 111-120.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部