期刊文献+

CeO_2-ZrO_2-聚苯乙烯杂化材料的制备与性能

Preparation and Performance of CeO_2-ZrO_2-Polystyrene Hybrid Material
下载PDF
导出
摘要 以非离子表面活性剂P123为模板剂,ZrOCl2.8H2O和Ce(NO3)3.6H2O为原料,制备出CeO2-ZrO2介孔粒子。采用油酸对介孔CeO2-ZrO2粒子进行有机改性后,与苯乙烯原位聚合得到CeO2-ZrO2-聚苯乙烯杂化材料。该杂化材料的热分解温度达到417℃,与纯的聚苯乙烯分解温度相比有显著提高;当CeO2-ZrO2用量达到m(CeO2-ZrO2)/m(苯乙烯)=2/100时,杂化材料的拉伸强度达到最大值42.3MPa;当CeO2-ZrO2用量达到m(CeO2-ZrO2)/m(苯乙烯)=3/100时,杂化材料的缺口冲击强度达到最大值3.18 kJ/m2;有机分子进入CeO2-ZrO2介孔材料孔道内的方式和表面包覆作用,促进了无机粒子与基体间形成强有力的界面粘合,极大改善了聚苯乙烯的力学性能和热性能。 CeO2-ZrO2 mesoporous material was prepared by calcinations using block copolymers P123 as templates, zirconium chloride octahydrate (ZrOC12208H20) and cerium nitrate hexahydrate (Ce(NO3)3· 6H20) as raw materials. CeO2-ZrO2-polystyrene hybrid materials were prepared by in situ .polymerization of styrene and CeO2-ZrO2 mesoporous particles modified by oleic acid. The thermal decomposition temperature of hybrid materials reaches 417 12, higher than that of pure polystyrene. When the content of CeO2-ZrO2 is 2%, the tensile strength of hybrid materials reaches a maximum of 42.3MPa. And when the content of CeO2-ZrO2 is 3%, the impact strength of materials reaches a maximum of 3.18 kJ/m^2. The organic molecules coated the surface and filled in the pore canal of CeO2-ZrO2 mesoporous particles, enhancing the interface cohesive force between CeQ2-ZrO2 particles and polystyrene matrix, and greatly improving the mechanical property and heat resistance performance of polystyrene.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2013年第4期141-144,共4页 Polymer Materials Science & Engineering
关键词 铈锆复合氧化物 介孔材料 聚苯乙烯 力学性能 cerium-zirconium mixed oxide mesoporous materials polystyrene mechanical property
  • 相关文献

参考文献10

  • 1Moscofian A S O, Silva C R, Airoldi C. Stability of layered aluminum and magnesium organosilicates [ J ]. Mieroporous and Mesoporous Materials, 2008, 107 ( 1 ) : 113-120.
  • 2袁绍彦,黄锐,吴涛.纳米CaCO_3和SBS协同增韧聚苯乙烯(英文)[J].合成橡胶工业,2003,26(2):116-116. 被引量:9
  • 3Kadar F, Szazdi L, Fekete E, et al. Surface characteristics of layered silicates: Influence on the properties of clay/polymer nanocomposites[ J ]. Langmuir, 2006, 22 (86) : 7848-7854.
  • 4Wang Y, Lee W C. Interfacial interaction in calcium carbonate- polypropylene composites 1 : Surface characterization and treatment of calcium carbonate: A comparative study polymer composites [ J ]. Composite, 2003, 24(1): 119-131.
  • 5Stein A. Advances in microporous to mesoporous solids-highlights of recent progress[J]. Advanced Materials, 2003, 15 (10): 763-775.
  • 6Patarin J, Lebeau B, Zana R. Recent advances in the formation mechanisms of organized mesoporous materials[J ]. Current Opinion in Colloid and Interface Science, 2002, 7 (1-2) : 107-115.
  • 7Yuan Q, Duan H H, Li L L, et al. Controlled synthesis and assembly of eeria-based nanomaterials [ J ]. Journal of Colloid and Interface Science, 2009, 335(2): 151-167.
  • 8Rieger J. The glass transition temperature of polystyrene[J]. Journal of Thermal Analysis, 1996, 46(3-4): 965-972.
  • 9Mitchell S L, Guzman J. Synthesis and characterization of nanocrystalline and mesostructured CeO2 : Influence of the amino acid template[J]. Materials Chemistry and Physics, 2009, 114(1) : 462- 466.
  • 10Weinberger M, Froschl T, Puchegger S. Organosilica monoliths with muhiscale porosity: Detailed investigation of the influence of the surfactant on structure formation[J]. Silicon, 2009, 1 (1) : 19- 28.

二级参考文献1

  • 1[1]Schneider M, Pith T, Lambla M. Toughening of polystyrene by natural rubber based composite particles[J]. Journal of Materials Science, 1997, 32:6 331 ~ 6 342

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部