摘要
利用粘滞系数随时间变化的粘性元件和弹性模量随时间变化的弹性元件,构造非定常(也可称为变参数)Maxwell模型和非定常Zener模型。求解非定常模型的本构方程得到它们的松弛函数。结果表明,当粘滞系数和弹性模量随时间按幂律规律变化时,可以把经验函数stretched exponential函数和修正的stretched exponential函数视为非定常模型的应力松弛函数。文中用修正的stretched exponential函数对聚甲基丙烯酸甲酯(PMMA)和聚四氟乙烯(PTFE)松弛模量实验数据进行了拟合,表明该函数能较好地描述这两种聚合物的应力松弛。
The application of empirical relation. Based on no stationary Zener mod n-stationary spring el were ushered in stress relaxation and creep functions were limited because of no constitutive and viscous components, the non-stationary Maxwell model and the nonTheir relaxation moduli were obtained by solving the non-stationary constitutive relation. The results show that stretched exponential relaxation function and modified stretched exponential relaxation function can be seen as non-stationary model. The relaxation moduli of methylmethacrylate (PMMA) and polytetrafluorethylene (PTFE) can be well fitted by modified stretched exponential relaxation function.
出处
《高分子材料科学与工程》
EI
CAS
CSCD
北大核心
2013年第4期178-182,187,共6页
Polymer Materials Science & Engineering
基金
中国地震局教师科研基金资助项目(20120119)