期刊文献+

超级限制边连通二部图的充分条件

Sufficient Conditions for Bipartite Graphs to be Super Restricted Edge-connected
原文传递
导出
摘要 设S是连通图G的一个边割.若G-S不包含孤立点,则称S是G的一个限制边割.图G的最小限制边割的边数称为G的限制边连通度,记为λ′(G).如果图G的限制边连通度等于其最小边度,则称图G是最优限制边连通的,简称λ′-最优的.进一步,如果图G的每个最小限制边割恰好分离出图G的一条边,则称图G是超级限制边连通的,简称超级-λ′的.设G是一个最小度δ(G)≥2的n≥4阶二部图,ξ(G)是G的最小边度.本文证明了(a)若ξ(G)≥(n/2-2)(1+1/(δ(G)-1)),则G是λ′-最优的;(b)若ξ(G)>((n/2)-2)(1+1/(δ(G)-1)),则G是超级-λ′的,除非图G是K_(2,n-2),n≥6或是Cartesian积图K_(n/4,n/4)×K_2,其中n≥8且n整除4.最后,论文举例说明该结果是最好可能的. An edge cut S of a connected graph G is called a restricted edge cut if G-S contains no isolated vertices. The minimum caxdinality of all restricted edge cuts is called the restricted edge connectivity λ′(G) of G. A graph G is optimally restricted edge-connected, for short λ′-optimal, if λ′(G)=ξ(G), where ξ(G) is the minimum edge degree of G. A graph is said to be super restricted edge-connected, for short super-λ′, if every minimum restricted edge cut isolates an edge. Let G be a connected bipartite graph of order n, minimum degree δ(G)≥2 and minimum edge degree ξ(G). In this paper, we prove that: (a) If ξ(G)≥(n/2-2)(1+1/δ(G)-1), then G is λ′-optimal; (b) If ξ(G)〉(n/2-2)(1+1/δ(G)-1), then G is super-λ′ with the exception of the complete bipartite graph K2,n-2,n≥6, and the Cartesian product graph Kn/2 ,n/4×K2 with n≥8 and n is divisible by 4. Moreover, we demonstrate that these results are best possible.
作者 刘爱霞 原军
出处 《应用数学学报》 CSCD 北大核心 2013年第2期209-216,共8页 Acta Mathematicae Applicatae Sinica
基金 数学天元基金(No.11126076) 山西省青年科学基金(No.2012021001-2) 太原科技大学博士启动金(No.20082014 20122026)资助项目
关键词 二部图 边连通度 限制边连通度 bipartite graphs connectivity restricted edge connectivity
  • 相关文献

参考文献11

  • 1Esfahanian A H, Hakimi S L. On Computing a Condictional Edge-connectivity of a Graph. Informtion Proceeding Letters, 1988, 27(4): 165-199.
  • 2Ou J, Zhang F. Super Restricted Edge Connectivity of Regular Graphs. Graph and Combinatorics, 2005, 21(4): 459-467.
  • 3Wang M, Li Q. Conditional Edge Connectivity Properties, Reliability Comparisons and Transitivity of Graphs. Discrete Mathematics, 2002, 258(1 3): 205-214.
  • 4Li Q, Li Q. Reliability Analysis of Circulant Graphs. Networks, 1998, 31(2): 61-65.
  • 5Hellwig A, Volkmann L. Sufficicient Conditions for A'-optimality in Graphs of Diameter 2. Discrete Mathematics, 2004, 283(1-3): 113-120.
  • 6Balbuena C, Garcfa-Vzquez P, Marcote X. Sufficient Conditions for J-optimality in Graphs with Grith g. J. Graph Theory, 2006, 52(1): 73-86.
  • 7Zhang Z. Sufficient Conditions for Restricted-edge-connectivity to be Optimal. Discrete Mathematics,2007, 307(22): 2891-2899.
  • 8Hellwig A , Volkmann L . Sufficicient Conditions for Graphs to be M-optimal, Super-edge-connected und Maximally Edge-connected. J. Graph Theory, 2005, 48(3): 228-246.
  • 9Shang L, Zhang H. Sufficient Conditions for Graphs to be ),'-optimal and Super-),'. Networks, 2007, 49(3): 234-242.
  • 10Yuan J, Liu A, Wang S. Sufficient Conditions for Bipartite Graphs to be Super-k-restricted Edge Connected. Discrete Mathematics, 2009, 309(9): 2886-2896.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部