期刊文献+

最大度为8不含特定子图的平面图的全染色

Total Coloring of Planar Graph with Maximum Degree 8 and without Specified Subgraph
原文传递
导出
摘要 全染色是对图G的顶点和边同时进行正常染色,至少要用△+1个色才能对图G进行正常全染色.本文运用权转移的方法,证明了最大度为8的不含特定子图的简单平面图是9-全可染的. Total-coloring of graph G is to color the vertices and the edges of the graph properly. To this end, we must use at least △ + 1 colors to color the graph properly. In this paper, we use discharging method to verify that every simple planar graph with maximum degree 8 and without specified subgraph is 9-totally colorable.
出处 《应用数学学报》 CSCD 北大核心 2013年第2期280-292,共13页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11001055 71071090) 山东省自然科学基金(ZR2009AM009)资助项目
关键词 简单图 平面图 全染色 最大度 特定子图 simple graph planar graph total coloring maximum degree specified subgraph
  • 相关文献

参考文献1

二级参考文献10

  • 1Kowalik L,Sereni J S,Sˇkrekovski R.Total colouring of plane graphs with maximum degree nine. SIAM Journal on Discrete Mathematics . 2008
  • 2Bondy J A,,Murty U S R.Graph Theory. . 2008
  • 3Vizing,V. G.Some unsolved problems in graph theory. Uspekhi Matematicheskih Nauk . 1968
  • 4BEHZAD M.Graphs and their chromatic numbers. . 1965
  • 5Borodin O V,Kostochka A V,Woodall D R.Total colorings of planar graphs with large maximum degree. Journal of Graph Theory . 1997
  • 6Weifan Wang.Total Chromatic Number of Planar Graphs With Maximum Degree Ten. Journal of Graph Theory . 2007
  • 7O.V.Borodin,A.V.Kostochka,D.R.Woodall.Total colorings of planar graphs with large girth. European Journal of Combinatorics . 1998
  • 8Jianfeng Hou,Guizhen Liu,Jiansheng Cai.List edge and List Total coloring of planar graphs without 4-cycles. Theoretical Computer Science . 2006
  • 9Hou J F,Zhu Y,Liu G Z,et al.Total coloring of planar graphs without small cycles. J Graphs Comb . 2008
  • 10Min-le SHANGGUAN.On total chromatic number of planar graphs without 4-cycles[J].Science China Mathematics,2007,50(1):81-86. 被引量:7

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部