期刊文献+

轴突输运中的行波解

Traveling Wave for Axonal Transport
原文传递
导出
摘要 本文对于起源于神经科学的一类轴突输运方程研究了行波解的性质,从数学上解析了神经信号是如何通过行波解传递的. In this paper, we investigate the traveling wave for an axonal transport arising from neuroscience and try to understand mathematically how the neural signal transfers through the traveling wave.
作者 黄艳 李杏
出处 《应用数学学报》 CSCD 北大核心 2013年第2期293-297,共5页 Acta Mathematicae Applicatae Sinica
关键词 轴突 行波解 双曲方程 axonal transport traveling wave hyperbolic system
  • 引文网络
  • 相关文献

参考文献11

  • 1Reed M C, Blum J J. Mathematical Questions in Axonal Transport. In: Lectures on Mathematics in the Life Sciences, 1994, 24.
  • 2Bear M, Connors B, Pavadiso M. Neuroscience: Exploring the Brain, 2nd Ed. Lippincott Williams gz Wilkins, Baltimore, 2001.
  • 3Kandel E R, et al. Principles of Neural Sciences, 4th Ed. McGraw Hill, 2000.
  • 4Blum J J, Reed M C. A Model for Fast Axonal Transport. Cell Motility Cytoskeleton, 1995, 5: 507-527.
  • 5Reed M C, Blum J J. A Model for Slow Axonal Transport and Its Application to Neurofilamentous Neuroputhies. Cell Motility Cytoskeleton, 1989, 12:53-65.
  • 6Reed M C, Blum J J. Theoretical Analysis of Radioactivity Profiles During Fast Axonal Transport: Effects of Deposition and Turnover. Cell Motility Cytoskeleton, 1986, 6:620-627.
  • 7Blum J J, Reed M C. The Transport of Organelles in Axons. Math. Biosci., 1988, 90:233-245.
  • 8Friedman A, Craciun G. Approximate Traveling Waves in Linear Reaction-hyperbolic Equations. SIAM J. Math. Anal., 2006, 38:741-758.
  • 9Reed M C, Venakides S, Blum J J. Approximate Traveling Waves in Linear Reaction-hyperbolic Equations. SIAM J. Appl. Math., 1990, 50:167-180.
  • 10Huang Feimin, Li Xing, Huang Yan. Existence and Stability of Traveling Wave to Reaction-hyperbolic ystem for Axonal ansport. Preprint.
;
使用帮助 返回顶部