期刊文献+

二维非饱和土壤水分运动方程的径向基配点差分法 被引量:2

Radial Basis Function Collocation Difference Method for Two-dimensional Water Movement Equation in Unsaturated Soil
原文传递
导出
摘要 针对二维非饱和土壤水分运动方程,将径向基配点法结合差分法构造了一种新的数值算法.该算法先采用差分法处理非线性项,再利用径向基函数配点法的隐格式求解方程,避免了因非线性项的存在导致不能直接使用配点法的现象,并且证明了该算法解的存在唯一性。通过对非饱和土壤水分运动的数值模拟,并采用试验数据对新算法进行了验证,模拟结果与试验结果非常吻合,表明该算法实用、有效。同时,比较分析了不同径向基函数以及不同算法的模拟精度,结果表明,与MQ函数和Guass函数相比,新的径向基函数具有更好的模拟精度,且相对于有限差分法和有限元法,本文提出的方法具有一定的优越性. A radial basis function collocation method combined with difference is devel-oped, which based on the collocation method and radial basis function interpolation for Two-dimensional water movement equation in unsaturated soil. This method first uses dif-ference method to deal with the nonlinear term, and then solves the equation by using implicit scheme of the equation. Moreover, the existence and uniqueness of the solution to the method is established. According to the numerical computing example results, it indicates that the new radial basis function has the best simulated precision than MQ func-tion and Gauss function. Furthermore, as compared with other methods, this algorithm is practical and effective.
出处 《应用数学学报》 CSCD 北大核心 2013年第2期337-349,共13页 Acta Mathematicae Applicatae Sinica
基金 国家支撑计划(2011BAD29B05)资助项目
关键词 非线性 土壤水分运动方程 差分法 径向基函数 配点法 存在唯一性 nonlinear water movement equations difference method radial basis function collocation method existence and uniqueness
  • 相关文献

参考文献8

二级参考文献20

  • 1秦伶俐,黄文彬,周喆.径向基函数在无单元方法中的应用[J].中国农业大学学报,2004,9(6):80-84. 被引量:9
  • 2吴宗敏.关于径向基函数插值的收敛性[J].数学年刊(A辑),1993,1(4):480-486. 被引量:5
  • 3Bao-huai Sheng.On Approximation by Reciprocals of Spherical Harmonics in L^p Norm[J].Acta Mathematicae Applicatae Sinica,2005,21(4):529-536. 被引量:2
  • 4Stein E M, Weiss G. Introduction to fourier analysis on euclidean spaces [ M ]. Princeton, New Jersey : Princeton University Press, 1971, 14:133 - 137.
  • 5Wendland Holger. Piecewise polynomial, positive definition and compactly supported radial functions of minimal degree [ J ]. Advance in Comp. Math. , 1995,4 (4) :389 - 396.
  • 6Dyn N. Interpolation of scattered data by radial functions [ A ]. Topics in Multivariate Approximation[ C ]. C K Chui, L L Schumaker, and F I Utrrtas( eds. ) Academic Press, 1987,47 - 61.
  • 7Powell M J D. Radial basis functions for muhivariable interpolation : a review [ A ]. Numerical Analysis [ C ]. Griffiths D F, Watson G A eds : Harlow I.ongman Scientific & Technical, 1987,223 - 241.
  • 8Buhmann M D. Multivariable interpolation using radial basis functions[ D ]. Ph D Dissertation, University of Cambridge 1989.
  • 9Light W A. Some aspects of radial basis function approximation [ J ]. Approximation Theory, Spline Functions and Applications, Singh S P eds, NA TO ASI Series, 1992,356 : 163 - 190.
  • 10Liu G R, Gu Y T. A point interpolation method for two-dimensional solids [ J ]. Int J Numer Methods Engrg, 2001,50:937 - 951.

共引文献19

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部