摘要
C(m,2)表示由圈C_m(v_1v_2…v_mv_1)增加边v_iv_(i+2)(i=1,…,m,i+2(mod m))所得的循环图.C(m,2)的一点悬挂(两点悬挂)是增加—个顶点x(两个顶点x,y)和边xv(边xv,yv)的图,其中v∈V(C(m,2)).我们证明了9阶循环图C(9,2)与路P_n的笛卡儿积的交叉数是10n;C(2m-1,2)的一点悬挂和两点悬挂的交叉数分别是m,2m.
C(m, 2) is a circulant graph obtained from Cm(v1v2…vmvq) by adding edges vivi+2 (i = 1, 2,…, m, i + 2 (mod m)). A single(double) suspension of C(m, 2) is the graph which obtained from C(m, 2) by adding one vertex x (two vertices x and y) and the edges xv (the edges xv, yv) and each v ∈ V(G). In this paper, we have proved that the crossing number of one and two suspensions of C(2m - 1, 2) are m, 2m,respectively. And we extend the earlier results to the Cartesian products of C(m, 2) × Pn, showing that the crossing number of cartesian product of Pn with circulant graph C(9, 2) is 10n.
出处
《应用数学学报》
CSCD
北大核心
2013年第2期350-362,共13页
Acta Mathematicae Applicatae Sinica
基金
国家自然基金(10771062
11071062)资助项目
关键词
交叉数
循环图
笛卡尔积
悬挂
路
crossing number
circulant graph
Cartesian product
suspension
path