期刊文献+

基于多模型结合优化的非结构化道路检测算法 被引量:13

Unstructured road-detection algorithm based on multiple models and optimization
下载PDF
导出
摘要 非结构化道路检测一直是道路检测算法中的难点.提出一种基于彩色混合高斯模型与抛物线模型相结合的优化的非结构化道路检测算法.首先采用中值滤波和二次采样法将待处理彩色图像由高分辨率变为低分辨率图像,并对图像进行光照补偿;然后建立基于优化聚类中心的K-means算法的混合高斯模型,通过最小二乘法求解左右道路抛物线模型参数;最后完成对道路边界线的拟合,实现其提取.实验结果表明,该算法对光照不均、阴影等影响的图像处理具有较强的抗干扰性,提高了运算速度,具有一定的鲁棒性和实时性. Unstructured road-detection has been a difficulty in the road-detection algorithms. An unstructured road-detection approach based on color Gaussian mixture model and parabolic model was presented. First we took the full-resolution color image and produced a low-resolution color image by a combination of averaging filtering and sub-sampling, and had illumination compensa- tion. Then we formulated Gaussian mixture model based on K-means algorithm, which was opti- mized clustering center for the road area and the other areas. Next we solved these parameters of right and left road parabolic models by the least square method. Lastly, we fitted the boundary of the road and achieved the extraction of it. The experimental results show that this approach has robustness against uneven illumination, shadows and reliability improving the processing speed.
出处 《工程设计学报》 CSCD 北大核心 2013年第2期157-162,共6页 Chinese Journal of Engineering Design
基金 国家自然科学基金资助项目(51175159)
关键词 非结构化道路检测 光照补偿 彩色混合高斯模型 K—means算法 抛物线道路模型 unstructured road-detection illumination compensation color Gaussian mixture modell K-means algorithm parabolic model
  • 相关文献

参考文献17

二级参考文献39

  • 1李青,郑南宁,马琳,程洪.基于主元神经网络的非结构化道路跟踪[J].机器人,2005,27(3):247-251. 被引量:18
  • 2管琰平,贺跃,刘培志,吕琳.基于彩色图像的非结构化道路检测[J].计算机应用,2005,25(12):2931-2934. 被引量:16
  • 3刘加海,白洪欢,黄微凹.基于彩色和边缘信息融合的道路分割算法[J].浙江大学学报(工学版),2006,40(1):29-32. 被引量:13
  • 4岩间滋 七宫大.透视图法在公路设计中的应用[M].北京:人民交通出版社,1980..
  • 5张元.数学信号处理II[M].北京:北京工业大学出版社,1995..
  • 6Hideki K,Ronit L,Raju M.Nicotinic control of axon excitability regulates thalamocortical transmission[J].Nature-Neuroscience,2007: 1168-1175.
  • 7Williams S R,Stuart G J.Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons[J].Science,2002,295: 1907-1910.
  • 8Kohonen T,Oja E,Simula O.Engineering applications of the self- organizing map[J].Proeeedings of the IEEE, 1996,84(10) : 1358-1384.
  • 9Luger G F.Artificial intelligence structures and strategies for complex problem solving[M].UK:Pearson Education Limited,2002.
  • 10Carpenter G A,Grossberg S.ART-2: Self-organization of stable category cognition codes for analog input patterns[J].Applied Optics, 1987,26: 4919-4930.

共引文献69

同被引文献119

引证文献13

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部