期刊文献+

改进差异演化算法在选址决策问题中的研究 被引量:1

Research on distribution center location choosing based on improved DE algorithm
下载PDF
导出
摘要 运输配送中心的选址在运输保障中占有重要作用。选址决策问题是一个经典的NP-Hard问题,对于大规模决策优化问题求解比较困难。提出一种基于差异演化算法和分布估计算法的优化方法,该算法利用差异演化算法收敛速度快、分布估计算法能够获得问题解空间的全局信息的优点来求解军用集装箱配送中心选址优化问题,并与当前流行的遗传算法进行比较,验证了算法的有效性。 Distribution center location choosing is very important in the transportation support. Lo- cation choosing is a typical NP-- Hard problem, and it s very hard to answer large scale optimization problem. The paper combined the evolutionary algorithm DE and EDA, which can take full advantage of fast convergence of DE and the global search of EDA to solve the problem of military container distribu tion center location choosing. At last, compared to the fashionable algorithm GA, the results validate the efficiency of the proposed algorithm.
出处 《计算机工程与科学》 CSCD 北大核心 2013年第4期115-119,共5页 Computer Engineering & Science
关键词 军用集装箱 差异演化算法 分布估计算法 遗传算法 配送中心选址 military container DE EDA GA distribution center location choosing
  • 相关文献

参考文献4

二级参考文献111

  • 1郭振宇,康龙云,程博,叶敏,曹秉刚.一种动态改变权重因子和交叉率的混沌差异演化算法[J].哈尔滨工程大学学报,2006,27(B07):523-526. 被引量:8
  • 2周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 3冀俊忠 张鸿勋 胡仁兵 等.一种基于独立性测试和蚁群优化的贝叶斯网学习算法.自动化学报,2009,35(3):281-288.
  • 4Echegoyen C, Mendiburu A, Santana R, et al. Ana- lyzing the probability of the optimum in EDAs based on Bayesian networks[C]//Proceeding of 2009 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2009: 1652-1659.
  • 5Pelikan M, Goldberg D E, Cantu-Paz E. BOA: the Bayesian optimization algorithm[C]//Gecco-99 : Pro- ceedings of the Genetic and Evolutionary Computation Conference. San Francisco: Morgan Kaufmann, 1999: 525-532.
  • 6Pelikan M, Goldberg D E, Tsutsui S. Hierarchical Bayesian optimization algorithm: toward a new gener- ation of evolutionary algorithms[C]//Sice 2003 An- nual Conference. New York: IEEE, 2003: 2738 2743.
  • 7Pelikan M, Sastry K, Goldberg D E. Scalability of the Bayesian optimization algorithm[J]. International Journal of Approximate Reasoning, 2002, 31 (3): 221-258.
  • 8Hlenbein M H. The equation for response to selection and its use for predietion[J]. Evolutionary Computa- tion, 1997, 5(3): 303-346.
  • 9Buntine W. Theory refinement on Bayesian networks [J]. Uncertainty in Artificial Intelligence--Proceed- ings of the 7th Conference. San Marco: Morgan Kaufmann, 1991: 52-60.
  • 10Cooper G F, Herskovits E. A Bayesian method for the induction of prohahilistic networks from data[J]. Machine Learning, 1992, 9(4): 309-347.

共引文献223

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部