期刊文献+

结合PCM聚类算法的网页排序 被引量:2

Web page ranking algorithm based on PCM clustering algorithm
下载PDF
导出
摘要 针对传统的网页排序算法中容易出现的忽略搜索结果主题相关性和主题漂移的问题,提出了结合PCM聚类算法的网页排序,用来提高搜索结果中网页主题的相关性并减少其主题漂移。首先,通过查询某个主题,运用随机行走(RWM)的方法来计算两个网页之间的对称社会距离(SSD);然后,用SSD和PCM聚类算法对网页进行聚类,得到相关主题的各个社区,通过计算得到各个社区中成员属于该社区的概率表示;最后,根据各社区成员的概率和网页的推荐度对网页进行排序。实验结果表明,与PageRank算法相比,该算法搜索结果中网页主题的相关程度更高;另外,由于是针对某个主题的排序,该算法减少了主题漂移。 The paper proposed a page ranking algorithm based on PCM clustering algorithm in order to solve the problems that the topic relevance of search results are easily ignored and the topics are easily changed in the traditional page sorting algorithms. It improves the topic relevance of the search results and reduces the topic drift. Firstly, by inquiring a theme, random walk method (RWM) is used to calculate the two pages of the symmetrical social distance (SSD) between two web pages. Secondly, SSD and PCM clustering algorithm are used to cluster page and get each community of related topic, and obtain the probability of each member in every community group. Finally, according to the probability and recommended degree of the pages, the web pages are sorted. The experimental results show that, compared with the PageRank algorithm, the proposed page sorting algorithm based on PCM clustering algorithm can obtain a search result with more relevant topic. Because it targets a subject sort, the algorithm reduces the topic drift.
出处 《计算机工程与科学》 CSCD 北大核心 2013年第4期144-149,共6页 Computer Engineering & Science
基金 江西省教育厅科技资助项目(GJJ11463)
关键词 排序算法 RWM SSD PCM聚类算法 ranking algorithm RWM SSD PCM clustering algrithm
  • 相关文献

参考文献2

二级参考文献15

  • 1陈朝伟.搜索引擎的排序技术及其在计算机网络上的应用[J].科技经济市场,2006(6). 被引量:1
  • 2王林,戴冠中.复杂网络中的社区发现——理论与应用[J].科技导报,2005,23(8):62-66. 被引量:50
  • 3张映海,何中市,陈永锋.搜索引擎结果中Web文档的排序研究[J].计算机与数字工程,2007,35(2):126-129. 被引量:2
  • 4李绍华,高文宇.搜索引擎页面排序算法研究综述[J].计算机应用研究,2007,24(6):4-7. 被引量:21
  • 5Witten I, Moffat A. Managing Gigabytes[M]. San Francisco: Morgan Kaufumann Publishers, 1999.20-30.
  • 6Search Engine User Behavior[EB/OL].http://www.iprospect.com/ premiumPDFs/WhitePaper_2006_SearchEngineUserBehavior.pdf.
  • 7Davison B,Gerasoulis A,Kleisuuris K,et al.Disco Web:Applying link analysis to web search (extended abstract)[C]//Vezza A,Maloney M,Cailliau R.Proceedings of the 8th ACM-WWW International Conference.Toronto:ACM Press,1999:148-149.
  • 8Khambatti M,Ryu K,Dasgupta P.Efficient discovery of implicitly formed Peer-to-Peer communities[J].International Journal of Parallel and Distributed Systems and Networks,2002,5(4):155-164.
  • 9Broader A Z,Kumar S R,Maghoul F,et al.Graph structure in the web.WWW9/Computer Networks,2000:309-320.
  • 10Wenpu Xing,Ali Ghorbani.Weighted pageRank algorithm[C]//IEEE Communication Networks and Services Research,Proceedings:Second Annual Conference on May,2004:19-21.

共引文献7

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部