期刊文献+

基于RBF神经网络的土壤侵蚀预测模型研究 被引量:9

Research on Soil Erosion Prediction Model Based on RBF Neural Network
下载PDF
导出
摘要 土壤侵蚀的物理机理十分复杂,用数学方式难以描述。针对土壤侵蚀过程的模糊性、随机性、非线性等特点,将RBF神经网络的理论与方法应用到土壤侵蚀预测中。以杏木小流域为研究对象,应用RBF神经网络方法构建土壤侵蚀预测模型,以汛期降雨量、径流系数、土壤容量、有机质含量及孔隙度土壤侵蚀因子作为模型的输入层变量,输出层变量为年土壤侵蚀模数。通过模拟训练和预测,RBF神经网络取得的结果较好,能够有效地预测土壤侵蚀,且与常见的BP神经网络土壤侵蚀预测模型相比,RBF神经网络得到的预测结果精度更高。RBF神经网络模型将土壤侵蚀预测问题转化为影响因子和年侵蚀模数的非线性问题,该模型的模拟与预测为复杂的土壤侵蚀规律研究提供了新途径。 The physical mechanism of soil erosion is so complicated that it is difficult to be described by the mathematical mode. According to the characteristic of vagueness, randomness and nonlinear of soil erosion process, the RBF neural network theory and method are applied to soil erosion prediction. With Xingmu small watershed as the research case, the application of RBF neural network method was adopted to construct soil erosion prediction model, and flood season rainfall, runoff coefficient, soil capacity, organic matter con- tent and porosity and so on were used as input layer variables, and yearly soil erosion modulus were used as the output layer variable. Through the simulation training and the forecast, results obtained through RBF neural network were precise, RBF neural network could be used as soil erosion prediction model, compared with the traditional BP neural network, RBF neural network could give the higher accuracy prediction re- suits. RBF neural network model shifts soil erosion prediction problem into the impact factor and erosion modulus nonlinear problem, the model of the simulation and forecast provides a new way to complex law of soil erosion research.
出处 《水土保持研究》 CSCD 北大核心 2013年第2期25-28,共4页 Research of Soil and Water Conservation
基金 国家自然科学基金资助项目(41072171) 水利部"948"计划项目(201122)
关键词 土壤侵蚀预测 RBF神经网络 BP神经网络 预测模型 soil erosion prediction RBF neural network BP neural network prediction mode
  • 相关文献

参考文献20

  • 1张光辉.土壤侵蚀模型研究现状与展望[J].水科学进展,2002,13(3):389-396. 被引量:47
  • 2李发鹏,李景玉,徐宗学.东北黑土区土壤退化及水土流失研究现状[J].水土保持研究,2006,13(3):50-54. 被引量:69
  • 3尹怀宁,汤姿,吕芳.东北平原西部近百年来生态环境退化机制分析[J].水土保持研究,2003,10(4):190-192. 被引量:7
  • 4Smith D D. Interpretation of soil conservation data for field use[J]. Agricultural Engineering, 1941, 22z 173- 175.
  • 5Wischmeier W H, Smith D D. Predicting Rainfall-Ero sion Losses from Cropland East of the Rocky Mountains [M]. USDA Agricultural Handbook, No. 292,1965.
  • 6Wischmeier W H, Smith D D. Predicting Rainfall-Ero- sion Losses[M]. USDA Handbook,No. 537,1978.
  • 7Nearing M A, Lane L J, Alberts E E, et al. Prediction technology for soil erosion by water: status and research needs[J]. Soil Sci. Soc. Am. J., 1990,54(6):1702- 1711.
  • 8Morgan R. The European Soil Erosion Model: An Up date on Its Structure and Research Base[M]// Rickson R. Conserving Soil Resources: European perspectives [ M]. CAB International, Cambridge, 1994.
  • 9Rose C W, Williams J R, Sander C C,et al. A mathe- matical model of soil erosion and deposition processes: theory for a plane land element[J] Soil Sci Soc Am J. , 1983,47(5) :991-995.
  • 10符素华,张卫国,刘宝元,朱启疆,吴敬东,段淑怀,李永贵.北京山区小流域土壤侵蚀模型[J].水土保持研究,2001,8(4):114-120. 被引量:45

二级参考文献152

共引文献598

同被引文献140

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部