期刊文献+

超薄SGOI衬底上全局应变Si的制备和表征 被引量:1

Fabrication and characterization of global strained-Si on ultra-thin SGOI
下载PDF
导出
摘要 应变Si是一种能在未来保持Si CMOS技术的发展继续遵循摩尔定律的新材料.本文结合SOI技术,利用改进型Ge浓缩技术制备了绝缘体上超薄的弛豫SiGe衬底,并使用超高真空化学气相沉积在较低温度下成功外延了厚度为25nm的应变Si单晶薄膜,扫描电子显微镜和原子力显微镜显示样品表面薄膜完整、平坦;高分辨透射电子显微镜和二次离子质谱表明:样品各层结构清晰、位错密度极低、界面陡直且元素分布均匀;紫外拉曼光谱证实了顶层Si中获得了1%的平面张应变,基于此的MOS器件有望获得比传统体Si大大提升的性能. Strained Si is such a novel substrate near-fully relaxed Silicon-Germanium (SiGe) which can help keep Moore' s law in future years. Ultra-thin and substrate was fabricated using a modified Ge condensation technique, and then a 25nm thick biaxially tensile strained-Si with a low Root Mean Square (RMS) roughness was epitaxially deposited on the SiGe-On-Insulator (SGOI) substrate by Ultra High Vacuum Chemical Vapor Deposition (UHVCVD). High-Resolution cross-sectional Transmission Electron Microscope (HR-XTEM) observations revealed that the strained-Si/SiGe layer was dislocation-free and the atoms at the interface were well aligned. Furthermore, Secondary Ion Mass Spectrometry (SIMS) results showed a sharp interface between layers and a uniform distribution of Ge in SiGe layer. One percent in-plane tensile strain in the strained-Si layer was confirmed by ultraviolet (UV)-Raman Spectra. According to those results, devices based on strained-Si are expected to have a better performance than the conventional ones.
出处 《南阳师范学院学报》 CAS 2013年第3期14-18,共5页 Journal of Nanyang Normal University
基金 河南省自然科学基金项目(112300410121) 南阳师院科研启动项目(ZX2012017 ZX2012018 ZX2012021)
关键词 应变SI Ge浓缩 应变弛豫 strained Si Ge condensation strain relaxation
  • 相关文献

参考文献23

  • 1Moutanabbir O, Hahnel A, Reiche M, et al. Strain Nano-Engineering: SSOI as a Playground [ J ]. ECS Transactions, 2011,35 (5) :43 - 50.
  • 2Thompson S E, Guangyu S, C Youn Sung, et al. Uni- axial-process-induced strained-Si: extending the CMOSroadmap [ J]. Electron Devices, IEEE Transactions on, 2006,53 (5) : 1010 - 1020.
  • 3Chidambaram P R, Smith B A, Hall L H, et al. 35 drive current improvement from recessed - SiGe drain extensions on 37 nm gate length PMOS[C]. In:VLSI Technology, 2004. Digest of Technical Papers. 2004 Symposium on. 2004.
  • 4Kah - Wee A, W Hoong - Shing, Balasubramanian N, et al. Enhanced performance in strained n-FET with double-recessed Si: C source/drain and lattice-mis- matched SiGe strain-transfer structure (STS) [ C ]. In: Semiconductor Device Research Symposium, 2007 In- ternational. 2007.
  • 5Morin P, Ortolland C, Mastromatteo E, et al. Mecha- nisms of stress generation within a polysilicon gate for nMOSFET performance enhancement [ J ]. Materials Science and Engineering B-Solid State Materials for Ad- vanced Technology, 2006,135 ( 3 ) : 215 - 219.
  • 6Pidin S, Mori T, Inoue K, et al. A novel strain en- hanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films [ C]. In: Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. 2004.
  • 7Fenouillet-Beranger C, Perreau P, Weber O, et al. En- hancement of devices performance of hybrid FDSOI/ bulk technology by using UTBOX sSOI substrates[ C]. In:VLSI Technology (VLSIT) , 2012 Symposium on. 2012. IEEE.
  • 8Yoshimi M, Cayrefourcq I, Mazur6 C. Strained-SOl (sSOI) technology for high-performance CMOSFETs in 45nm-or-below technology node [ C ]. In: Solid-State and Integrated Circuit Technology, 2006. ICSICTO6. 8th International Conference on. 2006. IEEE.
  • 9Allibert F, Cheng K, Vinet M, et al. Evaluation of sSOI wafers for 22nm node and beyond [ C ]. In: SOl Conference (SO1), 2012 IEEE International. 2012. IEEE.
  • 10Schwarzenbaeh W, Daval N, Kerdiles S, et al. Strained silicon on insulator substrates for fully depleted applica- tion[ C ]. In : IC Design & Technology ( ICICDT), 2012 IEEE International Conference on. 2012. IEEE.

二级参考文献61

  • 1张苗,狄增峰,刘卫丽,骆苏华,宋志棠,朱剑豪,林成鲁.改进型Ge浓缩技术制备SGOI及其机理[J].Journal of Semiconductors,2006,27(z1):252-256. 被引量:1
  • 2张鹤鸣,崔晓英,胡辉勇,戴显英,宣荣喜.应变SiGe SOI量子阱沟道PMOSFET阈值电压模型研究[J].物理学报,2007,56(6):3504-3508. 被引量:16
  • 3Tony A and Sumant S 2006 Potentials IEEE 25 No 4 31.
  • 4Welser J and Hoyt J Let al 1994 Tech. Dig. Int. Electron Devices Meet. 947 373.
  • 5Park J G and Lee G S et al 2006 Mater. Sci. Engin. B 134 142.
  • 6Tezuka T and Sugiyama N et al 2001 Appl. Phys. Lett. 79 1798.
  • 7Tezuka T, Sugiyama N and Takagi S 2003 J. Appl. Phys. 94 7553.
  • 8Di Z F, Zhang M, Liu W Let al 2005 J. Vac. Sci. Technol. B234.
  • 9Di Z F, Zhang M, Liu W Let al 2005 Mater. Sci. Engin. B 124 153.
  • 10Lee S W, Chueh Y L, Chen L J and Chou L J 2005 J. Vac. Sci. Technol. A 23 4.

共引文献7

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部