期刊文献+

基于FFT稀疏压缩感知域内遥感图像融合 被引量:4

Fusion of Remote Sensing Image with Compressive Sensing Based on FFT Spares
下载PDF
导出
摘要 压缩感知理论因其远低于乃奎斯特采样率的特性,减少了大量的采样数据。基于这一特性,提出一种在压缩感知域内进行遥感图像融合的方法。该方法首先对图像作快速傅里叶变换(FFT);然后进行测量采样获取压缩感知域数据;再采用权重法对数据进行融合;最后通过重构算法得到融合图像。通过实验得出压缩感知域内遥感图像融合具有数据量少,融合效果好等特点。 Because of its compressive sample feature that the sampling rate is far lower than the Nyquist, a large number of sampled data are reduced by compressive sensing. For this feature, a method of remote sensing image fusion which based on compressive sensing was proposed. Firstly, the image is transformed by fast Fourier. Secondly, Compressive sensing domain data are got by taking measurement samples. Thirdly, the data are fused by taking different weights. Lastly, the fusion image is obtained by reconstruction algorithm. The experimental results proved that the less data needed to be processed and the fusion effect was good by this fusion method.
出处 《测绘科学技术学报》 CSCD 北大核心 2013年第1期58-62,共5页 Journal of Geomatics Science and Technology
基金 信息工程大学创优基金项目(S201205)
关键词 压缩感知 遥感图像 图像融合 傅里叶变换 重构算法 compressive sensing remote sensing image image fusion FFT(Fast Fourier Transformation) re-construetion algorithm
  • 相关文献

参考文献9

  • 1王海晖,彭嘉雄,吴巍,李峰.多源遥感图像融合效果评价方法研究[J].计算机工程与应用,2003,39(25):33-37. 被引量:127
  • 2DONOHO D L. Compressed Sensing[J]. IEEE Transac- tions on Information Theory,2006,52(4) 1289-1306.
  • 3CANDES E J. Compressive Sampling[C]///Proceedings of the International Congress of Mathematicians. Madrid, Spain, 2006:1433-1452.
  • 4李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:205
  • 5TROPP J A, GILBERT A C. Signal Recovery from Partial Information by Orthogonal Matching Pursuit [EB/OL]. (2005-04-21) [2010-08-25]. http://www-personal, umich. edu/-jtropp/papers/TG05-Signal-Recovery, pdf.
  • 6DONOHO D, DRORI I, TSAIG I. Y, et al. Sparse Solu- tion of Underdetermined Linear Equations by Stagewise Or- thogonal Matching Pursuit[R]. Technical Report, 2006.
  • 7CANDES E J, ROMBERG J, TAO T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly In- complete Frequency Information[J]. IEEE Transactions on Information Theory, 2006,52 (2) : 489-509.
  • 8WAN T, CANAGARAJAH N, A('HIM A, Compressive Image Fusion[C] ff 15th IEEE International Conference on Image Processing. San Diego, USA, 2008:1308-1311.
  • 9樊旭艳,付春龙,石继海,武丽娟.基于主成分分析的遥感图像模拟真彩色融合法[J].测绘科学技术学报,2006,23(4):287-289. 被引量:26

二级参考文献75

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society Publishing House, 2006. 1433-1452.
  • 4Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 5Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.
  • 6Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1996.
  • 7Candes E, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Technical Report 1999-28, Department of Statistics, Stanford University, USA, 1999.
  • 8Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322.
  • 9Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.
  • 10Candes E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3): 969-985.

共引文献355

同被引文献37

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部