期刊文献+

Genipin交联丝素蛋白纳米纤维膜的制备与性能 被引量:5

Preparation and properties of Genipin cross-linked silk fibroin nanofibrous membranes
原文传递
导出
摘要 利用Genipin对再生丝素蛋白进行交联改性,并通过静电纺丝法制备交联的丝素蛋白纳米纤维膜。利用场发射扫描电镜、红外光谱仪、X射线衍射仪、热重分析仪以及拉力机等对其结构与性能进行表征与测试。结果表明,随着交联剂Genipin质量比的增加,交联度增加,静电纺丝素蛋白纳米纤维平均直径增大,标准偏差增大;Genipin交联对丝素蛋白纳米纤维结晶结构影响不大,但热性能提高;常温条件下,随着Genipin质量比从2%提高至15%,丝素蛋白纳米纤维膜的力学性能逐渐增强,质量比为10%时,其力学性能较好,拉伸强度和断裂应变分别为19.6MPa和5.9%;随着试验温度从40℃升高到200℃,丝素蛋白纳米纤维膜的拉伸强度和断裂应变先增大然后减小,当试验温度为80℃时,其力学性能较好,拉伸强度和断裂应变分别为41.6MPa和8.6%。 The regenerated silk fibroin(SF) was modified by Genipin cross-linking,and then was made into cross-linked nanofibrous membranes via electrospinning.The structure and properties of nanofibers were characterized and tested by use of FE-SEM,FTIR,XRD,TGA and tensile tester.The results show that the degree of cross-linking,average diameter of nanofibers and standard deviation increase with the increasing of Genipin mass ratio.And the crystal structure of SF nanofibers is not influenced by Genipin cross-linking,but thermal properties are improved.Under room temperature,the mechanical properties of SF nanofibrous membranes are enhanced with the increasing of Genipin mass ratio from 2% to 15%.And the mechanical property is better when the Genipin mass ratio is 10%,the tensile strength and breaking strain are 19.6 MPa and 5.9% respectively.The tensile strength and breaking strain of SF nanofibrous membranes first increase and then decrease with the rising of tensile temperature from 40 ℃ to 200 ℃,the mechanical property is better at 80 ℃,the tensile strength and breaking strain are 41.6 MPa and 8.6% respectively.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2013年第2期83-88,共6页 Acta Materiae Compositae Sinica
基金 973计划前期研究课题(2008CB617506) 浙江省自然科学基金重点项目(Z4100798) 长江学者和创新团队发展计划资助(IRT0654) 先进纺织材料与制备技术教育部重点实验室开放基金资助项目(2006003)
关键词 GENIPIN 丝素蛋白 交联 静电纺丝 纳米纤维 Genipin silk fibroin cross-linking electrospinning nanofibers
  • 相关文献

参考文献17

  • 1Hardy J G, Romer L M, Seheibel T R. Polymeric materials based on silk proteins [J]. Polymer, 2008, 49.- 4309-4327.
  • 2Altman G H, Diaz F, Jakuba C, et al. Silk-based biomaterials [J]. Biomaterials, 2003, 24(3): 401-416.
  • 3Martins A, Araujo J V, Reis R L, et al. Electrospun nanostructured scaffolds for tissue engineering applications [J]. Nanomedicine, 2007, 2(6): 929-942.
  • 4Meechaisue C, Wutticharoenmongkol P, Waraput R, et al. Preparation of electrospun silk fibroin fiber mats as bone scaffolds: A preliminary study [J]. Biomedical Materials, 2007, 2(3): 181-188.
  • 5Kumbar S G, James R, Nukavarapu S P, et al. Electrospun nanofiber scaffolds: Engineering soft tissues[J]. Biomedical Materials, 2008, 3(3): 1-14.
  • 6Reddy N, Warner K, Yang Y Q, et al. Low-temperature wet-cross-linking of silk with citric acid [J]. Industrial Engineering Chemistry Research, 2011, 50(8): 4458-4463.
  • 7Li M Z, Tao W, Lu S Z, et al. Compliant film of regenerated antheraea pernyi silk fibroin by chemical crosslinking[J]. International Journal of Biological Maeromolecules, 2003, 32 (3) : 159-163.
  • 8刘冠峰,石川博.蚕丝的微细组织及其物理性质[J].浙丝科技,1982,3:56-64.
  • 9韩龙龙,张幼珠.稀土对丝素膜结构及溶解性的作用研究[J].丝绸,2002,39(4):8-9. 被引量:5
  • 10叶勇,张剑韵,黄龙全.甘油和戊二醛对丝素膜性能的改良效果[J].蚕业科学,2006,32(2):231-235. 被引量:13

二级参考文献63

共引文献68

同被引文献41

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部