期刊文献+

石墨在固相剪切碾磨力场下的片层剥离及与PVC的纳米复合 被引量:3

Exfoliating interlayer and nanocompositing of graphite with PVC through solid state shear compounding technology
原文传递
导出
摘要 采用固相剪切复合技术成功制备石墨-聚氯乙烯(PVC)复合粉体,实现了石墨的片层剥离和在PVC基体中的纳米分散及对PVC的抗静电改性。通过XRD、SEM、TEM等表征了石墨-PVC/PVC复合材料的结构,研究了其抗静电性能。结果表明,石墨的片层厚度约20nm,径厚比超过10。固相剪切碾磨技术制备的石墨-PVC/PVC复合材料的导电性能有较大提高。在石墨质量分数为2%时,表面电阻率为4.6×107Ω.cm,已达到了抗静电材料的要求,实现了低填充。在石墨质量分数为10%时,表面电阻率达到最低的4.1×104Ω.cm。 The graphite-polyvinylchloride(PVC) compounding powders were successfully prepared by solid state shear compounding technology(S3C) at ambient temperature,and then the graphite-PVC/PVC nanocomposites were processed by moulding.The structure and antistatic performance of graphite-PVC compounding powder and nanocomposites prepared through S3C based on pan-milling were investigated by XRD,SEM,TEM and electrical resistivity tests.The results show that the conductivity properties of graphite/PVC nanocomposites prepared through S3C based on pan-milling 20 cycles at ambient temperature are remarkably improved.The surface resistivity of graphite-PVC/PVC nanocomposites with 2% mass fraction of graphite is 4.6×107 Ω·cm.The surface resistivity of graphite-PVC/PVC nanocomposites with 10% mass fraction of graphite reaches lowest as 4.1×104 Ω·cm.The strip flake of graphite particles with thickness less than 20 nm and the aspect ratio of 10 times disperses homogeneously in the PVC matrix.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2013年第2期94-98,共5页 Acta Materiae Compositae Sinica
基金 陕西省13115科技创新工程重大科技攻关专项(2009ZDKG-62) 高分子材料工程国家重点实验室开放课题基金
关键词 PVC 石墨 固相剪切复合技术 磨盘碾磨 纳米复合材料 抗静电 PVC graphite solid state shear compounding technology(S3C) panmilling nanocomposites antistatic
  • 相关文献

参考文献12

二级参考文献89

共引文献89

同被引文献21

  • 1姚雅萱,任玲玲,高思田,赵迎春,高慧芳,陶兴付.石墨烯层数测量方法的研究进展[J].化学通报,2015,78(2):100-106. 被引量:11
  • 2李侃社,王琪,陈英红.聚丙烯/石墨纳米复合材料的导电性能研究[J].高分子学报,2005,15(3):393-397. 被引量:10
  • 3P.L. Neumann,E. Tóvári,S. Csonka,K. Kamarás,Z.E. Horváth,L.P. Biró.Large scale nanopatterning of graphene[J].Nuclear Inst and Methods in Physics Research B.2011
  • 4Hao-Bin Zhang,Wen-Ge Zheng,Qing Yan,Yong Yang,Ji-Wen Wang,Zhao-Hui Lu,Guo-Ying Ji,Zhong-Zhen Yu.Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding[J].Polymer.2010(5)
  • 5Hyunwoo Kim,Christopher W. Macosko.Processing-property relationships of polycarbonate/graphene composites[J].Polymer.2009(15)
  • 6Yuxi Xu,Wenjing Hong,Hua Bai,Chun Li,Gaoquan Shi.Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure[J].Carbon.2009(15)
  • 7Guoxiu Wang,Xiaoping Shen,Bei Wang,Jane Yao,Jinsoo Park.Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets[J].Carbon.2009(5)
  • 8AipingYu,PalanisamyRamesh,XiaoboSun,ElenaBekyarova,Mikhail E.Itkis,Robert CHaddon.Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet – Carbon Nanotube Filler for Epoxy Composites[J].Adv Mater.2008(24)
  • 9Raquel Verdejo,Cristina Saiz-Arroyo,Javier Carretero-Gonzalez,Fabienne Barroso-Bujans,Miguel Angel Rodriguez-Perez,Miguel Angel Lopez-Manchado.Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets[J].European Polymer Journal.2008(9)
  • 10Sabyasachi Ganguli,Ajit K. Roy,David P. Anderson.Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites[J].Carbon.2008(5)

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部